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1. INTRODUCTION 

Disruption prediction is a crucial topic, especially for large-scale tokamaks, given the catastrophic consequences 

of plasma instabilities on reactor components. Recent progresses have proved that deep neural network can 

accurately predict the coming disruptions by learning from historical data, which becomes a potential solution 

for the disruption prediction in future devices [1]. This methodology has also been proved in HL-2A and HL-3 

tokamak, both in offline testing and online experiment [2, 3]. But for future devices like ITER, these devices 

will initially operate with lower plasma current, stored energy and aspect pressure and progressively accessing 

higher parameter spaces, creating a critical need for models with robust extrapolation capabilities.[4].  

The HL-3 tokamak provides an ideal testbed for this investigation. The device starts to operate with 100kA, 

100ms plasmas in 2020, and has accessed the plasma current of 1.6MA, the stored energy of more than 400kJ, 

and the aspect ratio higher than 3 in recent years. In this research, the extrapolation capability of deep learning-

based disruption prediction algorithm is evaluated by data from HL-3. It has been observed that the performance 

of conventional algorithm degrades with the promotion of key plasma parameters, as expected. To address this 

limitation, predict-first neural network (PFNN) is applied, which fundamentally reorients the disruption 

prediction approach from direct parameter regression to plasma evolution pattern recognition. 

 

2. PREDICT-FIRST NEURAL NETWORK 

The PFNN architecture operates through a dual-stage prediction process. In the first stage, a series of temporal 

convolutional networks generate time-resolved predictions of key plasma parameters, including plasma current, 

density, shape, and stored energy. These predictions are based on the current plasma state, control targets, and 

actuator inputs. The second stage of the network then compares these predicted trajectories with the actual 

experimental measurements, quantifying the deviations and identifying anomalous plasma behaviour that may 

precede disruptions.  This two-stage approach provides several critical advantages over conventional methods. 

First, by focusing on the evolution of plasma parameters rather than their absolute values, the model becomes 

less sensitive to shifts in parameter distributions. Second, the prediction-first paradigm inherently incorporates 

fundamental plasma physics principles, including force balance, energy balance, and particle balance, through 

the design of its prediction tasks. This physics-informed approach enhances the model's ability to generalize to 

new parameter regimes. 

 

3. THE EXTRAPOLATION CAPABILITY 

To evaluate the extrapolation capabilities of the PFNN, we conducted extensive testing on a dataset comprising 

479 HL-3 discharges, including 214 disruptive shots and 265 non-disruptive shots. The dataset spans a wide 

range of plasma parameters, with plasma currents ranging from 0.1 to 1.6 MA, stored energies from 40 to 420 kJ, 

and aspect ratios from 0.3 to 3.2. The performance of the PFNN was compared against a baseline TCN model  

[5] trained on the same dataset. The results demonstrate a clear advantage for the PFNN approach. While the 

baseline model exhibits a progressive decline in prediction accuracy as the plasma parameters extend beyond the 

training range, the PFNN maintains consistent performance across all parameter regimes. This stability is 

particularly evident in high-performance conditions, where the baseline model's accuracy drops by around 10%, 

while the PFNN shows only minimal variation in performance. 

The implications of this research extend beyond immediate performance improvements. The success of the 

PFNN architecture highlights the importance of incorporating physical principles into machine learning models 

for fusion applications. As we move toward reactors like ITER and beyond, where operational experience will 

be limited and parameter ranges will be significantly extended, such physics-informed approaches may prove 
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essential for developing reliable prediction and control systems. Future work will focus on further refining the 

PFNN architecture and exploring its application to other challenging scenarios in tokamak operation, such as the 

prediction of specific disruption precursors and the integration with real-time control systems. 

Figure 1 The structure of predict-first neural network. Three TCNs are developed to predict the evolution of plasma stored 

energy (We), density(ne) and current (Ip) & shape. The predicted trajectories are incorporated into a conventional baseline 

model to consist a PFNN algorithm. 

Figure 2 The accuracy of baseline algorithm and PFNN on shots with different ranges of plasma current (Ip), stored energy 

(We) and aspect pressure (βN). The curve has been smoothed with a window of 100 shots and x-axis represents the mean 

value of the 100 maximum parameters for the shots. Therefore the range of x-axis is not totally same as described in text. 
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