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• It has been developed for first wall of the W armor reliably bonding on 
CuCrZr/316L(N) bi-metallic heat sink for ITER and on low activation 
structural materials for future reactor.  

• An ITER FW semi-prototype with 20 fingers assembly via a HIP diffusion 
bonding process is capable of 5.9 MW/m² for 8,800 cycles.

• For DEMO, He-cooling W/RAFMs and W/V4Cr4Ti/RAFMs FW mock-ups 
are capble of  1 MW/m² for 1,000 cycles, with the latter showing strong D2 
gas permeation barrier. Instead, FeCrAl/RAFMs is also studied.

ABSTRACT
ITER EHF W FW AND ITS THERMAL FATIGUE PERFORMANCE
A semi-prototype (Fig. 2 (b)) indicates maturity towards series production.

• 20 fingers (Fig. 2 (a)) with Defect-free W/CuCrZr bonding (Fig. 2(c)).
• Durable for 8,800 cycles at 5.9 MW/m2 (Fig.2 (d)) and 23,000 cycles at 

4.7 MW/m2 where after a water leakage at HVT bi-metallic joint.

OUTCOME

• First wall (FW) provides 100% thermal shielding to other components by 
active-cooling an armored heat-sink and support structure. 

• ITER Enhanced heat flux (EHF) FW had been qualified via full-scale 
prototyping when it occured the change of the armor from Be to W, a 
promising plasma-facing material (PFM) for future.

• Towards future from ITER consists of other changes of CuCrZr/316L(N) bi-
metallic hypervapotron (HVT) heat-sink to rectangular cooling channel of 
low activation structural materials , with heat flux from 4.7 to ~1 MW/m² 
for a reduced number of cycles from 30000 to ~1000, and thinning W tiles 
from 6~12mm to 2~3mm for better neutronic performances.

• R&Ds to improve manufacturing tech., thermal fatigue performance and 
tritium permeation barrier are of great importance, including those with 
9Cr-WVTa RAFM steel and V4Cr4Ti alloy as structural material.

BACKGROUND

CHALLENGES TO MEET THE REQUIRED PERFORMANCES
• Despite of well-developed ITER W divertor dome HVT units, it is a 

challenge to meet the much longer thermal fatigue lifetime of EHF FW. 
• To incooperate a reliable tritium permeation barrier for duture reactor.

FW DESIGN TO HAVE TRITIUM PERMEATION BARRIER
• Typical FW in Figure 1 with an rectangular insert to protect the main 

structural material from oxidation by O2 impurity in He coolant:  RAFMs-
FeCrAl insert and V4Cr4Ti-RAFMs insert.  

•The materials bonding interface would be served as a tritium permeation 
barrier by forming diffusion-reaction layer.

HIP DIFFUSION BONDING TO MAKE FW
• For ITER FW: casting 1mm pure Cu on W tiles → HIPing to CuCrZr/316L(N) 

heat sink at 580oC for 2h in pressure of 150 MPa.
• For DEMO FW: W/Fe/RAFMs and W/V/V4Cr4Ti/RAFMs bonding at 900oC 

for 2h in pressure of 150 MPa. 
• Laser welding various steel covers to form internal cooling channels and 

water boxes.

CHALLENGES / METHODS / IMPLEMENTATION

Figure 1 He-cooling FW heat-sink with rectangular insert (FeCrAl or RAFMs) as cooling 
channel, (a) overall layout, (b) cooling channel, (c) the manufactured V4Cr4Ti/RAFMs 
mock-ups

• The manufacturing of ITER W EHF FW and its major properties have 
been demonstrated, futher improvement to de-risk water leak at the 
heat sink bi-metallic interface is required. 

• FW technologies for future are invetigated and are scaling up, focusing 
on low activation materials operating at higher temperature, strong 
tritium barriers.

Summary
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Figure. 2 ITER EHF W FW fingers (a), semi-prototype (b), EDS across bonding interface 
(c), IR images at various number of cycles at 5.9 MW/m2 (d) and the IR images (e) 
showing the uniform hot-water (85oC) flow in the non-blocked channel at 2.24 kg/s

Figure 3 The 2.5mm thick W tiles armored V4Cr4Ti/RAFMs mock-ups, its interface 
nano-meter TiC particles, thermal cycling test and D2 gas permeation test results 

ADVANCED V-BASE ALLOY FW WITH RAFM STEEL INSERT
Material bonding strength up to 240 MPa, providing a dispersion TiC barrier 
to reduce D2 permeation rate by 3 orders. FW mock-up is durable for 1.25 
MW/m2 heat flux when the vanadium alloy temperature reaches > 700oC. 

（a) V4Cr4Ti/RAFMs FW mock-up & the interface

（b) 1~1.25MW/m2 thermal cycling,  surf. temp. evolution

（c) 100 kPa D2 
permeation test

V4Cr4Ti/RAFMs 
joint samples

V4Cr4Ti 
samples

Figure 4 EB-welding 9 units for a full-size FW 
assembly, 2mm W tiles HIP bonded to RAFMs

SCALING-UP FW panel FOR CFETR
EB-welding to assembly 1/9 size FW units to a full-size FW (1.2x1x1m) . 


