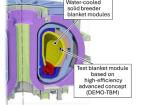
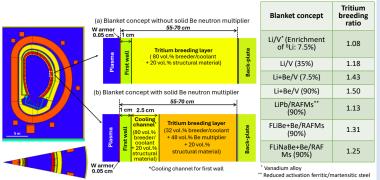
Design Studies on Advanced Self-Cooled **Liquid Test Blanket Modules for JA DEMO**


T. Tanaka¹, M. Kondo², S. Ebara³, S. Ito³, K. Katayama⁴, R. Kasada³, N.H. Oono³ ¹ National Institute for Fusion Science, Japan, ² Institute of Science Tokyo, Japan ³ Tohoku University, Japan, ⁴ Kyushu University, Japan tanaka.teruya@nifs.ac.jp

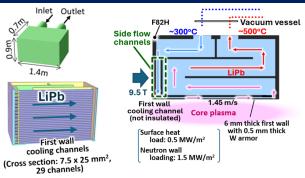
Abstract

- A self-cooled LiPb concept has been selected as the first candidate of a test blanket module (TBM) for a DEMO reactor of Japan (JA DEMO).
- In the present paper, the proposed structure of the LiPb DEMO-TBM and the feasibility evaluations mainly from the viewpoint of first wall cooling and MHD pressure drop are described.

DEMO-TBM for JA-DEMO

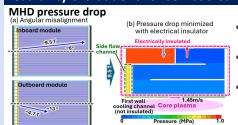

- In the Japan's fusion demonstration reactor (JA DEMO), electricity generation will be demonstrated with the water-cooled solid breeder blanket system [1, 2].
- In the later period of the operation, advanced blanket concepts which could achieve higher efficiency power generation are planned to be tested by installing test blanket modules (DEMO-TBMs).

Test blanket module for JA DEMO (DEMO-TBM) (Position and dimensions have not been decided.)

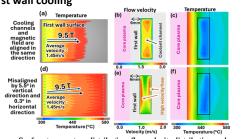

Tritium breeding performances of liquid blanket concepts

• Tritium breeding ratios (TBRs) of self-cooled liquid blanket concepts were evaluated assuming that all the water-cooled solid breeder blanket modules were replaced by self-cooled liquid blanket modules

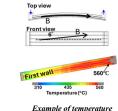
Calculation geometry for neutron transport and evaluated TBRs.


Proposed structure of self-cooled LiPb DEMO-TBM

Proposed structure of self-cooled LiPb DEMO-TBM.


- Straight magnetic field lines and cooling channels are assumed to obtain the perspectives on feasibility of the proposed TBM design.
- Since the magnetic field lines in the reactor are curved along the toroidal direction of the torus, the first wall cooling channels in the actual blanket modules would also be curved along the magnetic field lines.
- Design modification on the wall thicknesses, edge shapes of the module and coolant channels, etc. is planned to be performed based on temperature control and mechanical stress analysis.
- Investigation of self-cooled molten salt TBM, i.e., FLiBe and FLiNaBe, has also been started for a similar TBM structure.

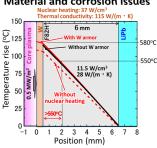
Feasibility evaluations for self-cooled LiPb DEMO-TBM



- No electrical insulation: ~6 MPa.
- · With insulation for the side flow channel: ~2.3 MPa.
- With Insulation for other than the first wall channels: ~1.0 MPa.

Pressure drop in LiPb DEMO-TBM First wall cooling

distribution calculated with curved cooling channels and curved Surface temperature distribution, flow velocity distribution and magnetic field. cross-sectional temperature distribution



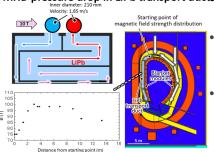
Changes in velocity distribution according to magnetic field direction

laver on FeCrAl alloy

• The results indicate the importance of heat removal enhancement utilizing the characteristics of a liquid metal flow under an intense magnetic field. (b) Anti-corrosion Al_2O_3

Material and corrosion issues

Temperature distribution in a 6 mm thick F82H first wall


• The front region within ~2 mm from the first wall surface exceeds 550°C.

(a) Design modification LiPb

Efforts to mitigate corrosion in first wall cooling channels

- Corrosion due to the high velocity flows has been one of important
- Efforts to mitigate the corrosion issue are being conducted.

MHD pressure drop in LiPb transport ducts

- MHD pressure drop in transport ducts could be suppressed by electrical insulation. (417 MPa → 1.5 MPa)
 - Further reduction could be possible by modification in duct configuration (increasing the number of ducts).

Magnetic field strength at the back side of inboard blanket modules

Conclusion

- Angular misalignment between the first wall cooling channel and magnetic field induces high velocity flow layers in the coolant flow. → This is essential to enhance the heat removal performance.
- The magnitude of MHD pressure drop in the TBM system could be suppressed to an acceptable level with appropriate electrical insulation.

Acknowledgement

This work has been supported by QST Research Collaboration for Fusion DEMO.