Design Studies on Advanced Self-Cooled
Liquid Test Blanket Modules for JA DEMO

T. Tanaka!, M. Kondo?, S. Ebara3, S. Ito?, K. Katayama?, R. Kasada3, N.H. Oono?

ID: 3100

1 National Institute for Fusion Science, Japan, ?Institute of Science Tokyo, Japan
3Tohoku University, Japan, 4 Kyushu University, Japan

tanaka.teruya@nifs.ac.jp

¢ A self-cooled LiPb concept has been selected as the first candidate of a
test blanket module (TBM) for a DEMO reactor of Japan (JA DEMO).

e In the present paper, the proposed structure of the LiPb DEMO-TBM and
the feasibility evaluations mainly from the viewpoint of first wall cooling
and MHD pressure drop are described.

DEMO-TBM for JA-DEMO

e In the Japan's fusion demonstration reactor (JA DEMO), electricity
generation will be demonstrated with the water-cooled solid breeder
blanket system [1, 2].

¢ In the later period of the operation,
advanced blanket concepts which
could achieve higher efficiency
power generation are planned to be
tested by installing test blanket
modules (DEMO-TBMs).

[1] TOBITA, K., et al., “Overview of the DEMO conceptual design activity in Japan”, Fusion
Engineering and Design 136 (2018) 1024-1031.

[2] SOMEYA, Y, et al., “Development of water-cooled cylindrical blanket in JA DEMO”, Nucl.
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(Position and dimensions have not been decided.)

Tritium breeding performances of liquid blanket c

e Tritium breeding ratios (TBRs) of self-cooled liquid blanket concepts were
evaluated assuming that all the water-cooled solid breeder blanket
modules were replaced by self-cooled liquid blanket modules.
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Calculation geometry for neutron transport and evaluated TBRs.

Proposed structure of self-cooled LiPb DEMO-TBM
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Proposed structure of self-cooled LiPb DEMO-TBM.

* Straight magnetic field lines and cooling channels are assumed to obtain
the perspectives on feasibility of the proposed TBM design.

« Since the magnetic field lines in the reactor are curved along the toroidal
direction of the torus, the first wall cooling channels in the actual
blanket modules would also be curved along the magnetic field lines.

¢ Design modification on the wall thicknesses, edge shapes of the module
and coolant channels, etc. is planned to be performed based on
temperature control and mechanical stress analysis.

e Investigation of self-cooled molten salt TBM, i.e., FLiBe and FLiNaBe, has
also been started for a similar TBM structure.
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e The results indicate the importance of heat removal enhancement
utilizing the characteristics of a liquid metal flow under an intense
magnetic field.
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Material and corrosion issues
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Efforts to mitigate corrosion in first wall cooling channels
e Corrosion due to the high velocity
flows has been one of important
concerns.
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are being conducted.
MHD pressure drop in LiPb transport ducts
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Magnetic field strength at the back side of inboard blanket modules

Conclusion

e Angular misalignment between the first wall cooling channel and magnetic
field induces high velocity flow layers in the coolant flow.=» This is essential
to enhance the heat removal performance.

<—° The magnitude of MHD pressure drop in the TBM system could be

suppressed to an acceptable level with appropriate electrical insulation.
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