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1. LOW POWER EDA H-MODE

5.  COMPARISON WITH EXPERIMENT
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❖ Radial localization, wavenumber, and phase velocity: 

• EDA H-mode transition around 3s: increase in plasma 

stored energy and central line averaged density, and rise 

of the QCM (from ECE edge); 

• The enhanced D-Alpha (EDA) H-mode is a promising 

ELM-free regime for ITER and a DEMO reactor [1,2];

• A quasi-coherent mode (QCM) around the separatrix 

enhances radially outward transport [3], likely 

preventing the pressure gradient from overcoming the 

peeling-ballooning limit;

• Characterizing the QCM drive instability is key to 

reliably extrapolating the EDA H-mode to future fusion 

devices. 

INTRODUCTION

• Compare QCM experimental fingerprints with linear  

gyrokinetic simulations to identify potential QCM 

drivers. 

• MEM plunge up to the 

confinement region: 

first time for H-mode 

plasmas in AUG;

• QCM well visible by 

ball-pen probe potential 

and ion saturation 

current:  frequency 

range 40-60 kHz.
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• 𝛼𝑛𝜙  has a radial 

dependency: it is 

correlated in the SOL and 

anti-correlated in the edge;

• Correlated cross phase: 

characteristic of drift-

interchange instability [5];   

• Anti-correlated cross 

phase: a fingerprint of 

electromagnetic instabilities 

[5], e.g., kinetic ballooning 

mode - KBM [6].
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• Low power EDA H-mode (Bt = -2.5 T, plasma current 0.6 MA, and 

ECRH up to 1 MW) to maximize the number of experimental 

observables; 

Suitable to investigate the QCM turbulence 

fingerprints with electrostatics probes 

• Main diagnostics to 

measure the QCM here:

• Scanning probe: probe head with Langmuir and 

ball-pen probe pins installed on the midplane 

manipulator (MEM) [4];

• Also: Lithium beam, Thomson scattering, ECE, 

and Doppler reflectometry.   

6.  BETA AND COLLISIONALITY SCAN (𝝆𝒕𝒐𝒓 = 𝟎. 𝟗𝟗) 

❖ Sensitivity scan in beta: ❖ Sensitivity scan collisionality:
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Collisionality scan

• QCM is radially localized in the pedestal foot and center, spreading to the SOL;

• Poloidal wavenumber: 𝑘𝜃 𝜌𝑠 = 0.02 − 0.05 (𝜌𝑠 = 𝑚𝑖 𝑇𝑒 /𝑒𝐵) [3,7]; 

• In the plasma frame, QCM propagation varies radially from the electron diamagnetic 

direction (EDD) to the ion diamagnetic direction (IDD) (within the error bars).     
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2.  MHD STABILITY ANALYSIS

4.  LINEAR GYROKINETIC SIMULATIONS 

Top Center Foot
• Linear gyrokinetic simulations with the code 

GENE [10,11]: 

𝜋

−𝜋

0

𝜋

−𝜋

0

𝛽/𝛽nominal

1.0 2.00

Cross − phase (𝑛 × 𝜙) 

Cross − phase (𝑛 × 𝑇∥) 

1.50.5

𝜋

−𝜋

0

𝜋

−𝜋

0

𝜈/𝜈nominal

1.0 100.00.1

Cross − phase (𝑛 × 𝜙) 

Cross − phase (𝑛 × 𝑇∥) 

10.0

• MHD stability analyses with the MISHKA code [6];

• The low-power EDA H-mode is stable against 

peeling ballooning stability → enhanced pedestal 

transport by the QCM [3] likely clamps the pressure 

gradient below the limit. 

• Mode growth rate (γ) and frequency (ω) change 

rapidly with β: KBM signature [12];

• Cross-phase 𝒏 − 𝝓: close to −𝜋 at high 𝛽 and 

zero at low, i.e., drift-wave like [9];

•  Cross-phase 𝒏 − 𝑻𝒆,∥: around zero. 

Top: ITG and ETG

Center: TEM and ETG

Foot: KBM, TEM, and ETG    

• Growth rate (γ) strongly depends on 𝜈 above 

nominal: for higher values, RBM scale [13];

• Cross-phase 𝒏 − 𝝓: closer to −𝜋 for low𝜈 and 

− 𝜋/2 for high 𝜈;

•  Cross-phase 𝒏 − 𝑻𝒆,∥: remains around zero. 

• High shaping favors EDA H-

mode: 𝜅 = 1.63 and 𝛿𝑎𝑣𝑔 =

0.39;

▪ Midplane reciprocating 

probe (MEM) [4]; 

▪ Themal helium beam 

(THB) [5].

• QCM is visible after the transition 

to EDA H-mode around 3 s;  

Γ𝑟 ∝ 𝑘𝜃 sin 𝛼𝑛𝜙

• Maximum growth rate over the ballooning 

angles. Pedestal divided in Top, Center, and 

Foot;

• Dominant instabilities in each region:

ITG: ion temperature gradient; ETG: electron temperature gradient; 

TEM: trapped electron mode; KBM: kinetic ballooning mode   

❖ Cross-phase 𝒏 × 𝑻𝒆: near zero (THB linearized 

spectrum correlation analysis [8]);

❖ Cross-phase 𝒏 × 𝝓: anticorrelated towards the confined 

region (probe data [3]), electromagnetic signature [9]. 

• QCM is radially localized in the pedestal 

center and foot. At first glance, TEM and 

KBM are the main candidate;

• KBM growth rate is larger within QCM 

𝑘⊥𝜌𝑠 range. TEM peaks at higher 𝑘⊥𝜌𝑠 ;  

• QCM velocity in the co-moving (plasma) 

frame: KBM → IDD; TEM → EDD. 

However, significant uncertainties; 

• Comparing the cross-phases → 

experimental 𝛼𝑛𝑇𝑒
 and 𝛼𝑛𝜙  have good 

agreement with KBM linear fingerprint at 

the pedestal foot. 

(E M)

• A kinetic ballooning mode (KBM) in the pedestal foot is identified as the main candidate 

for the QCM drive instability based on comparisons between experimental fingerprints and 

local linear gyrokinetic simulations;

• Global linear gyrokinetic simulations with the nominal 𝐸𝑟 also observed a KBM in the 

pedestal foot/center that shares similarities with the QCM (e.g., radial location and 𝛼𝑛𝜙);

• The good agreement with the linear simulations suggests that the linear character of the 

mode is preserved to some extent. Next step: non-linear gyrokinetic and global flux-driven 

simulations.   
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