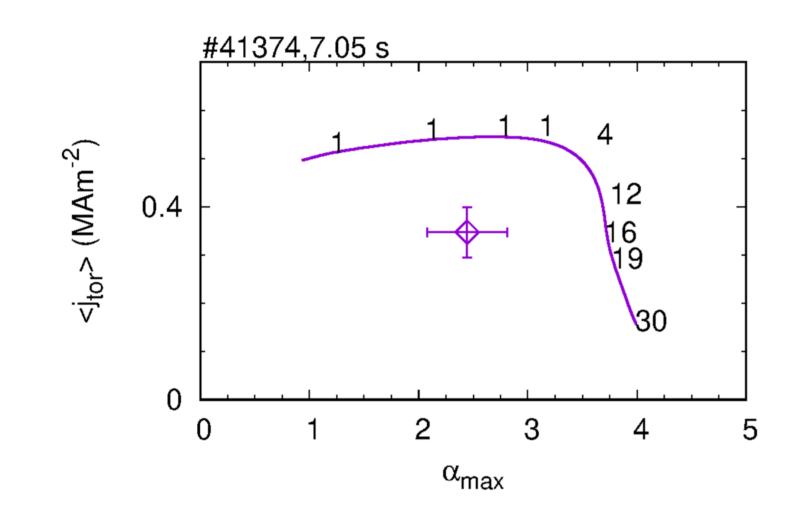
New insights on the quasicoherent mode in EDA high confinement discharges

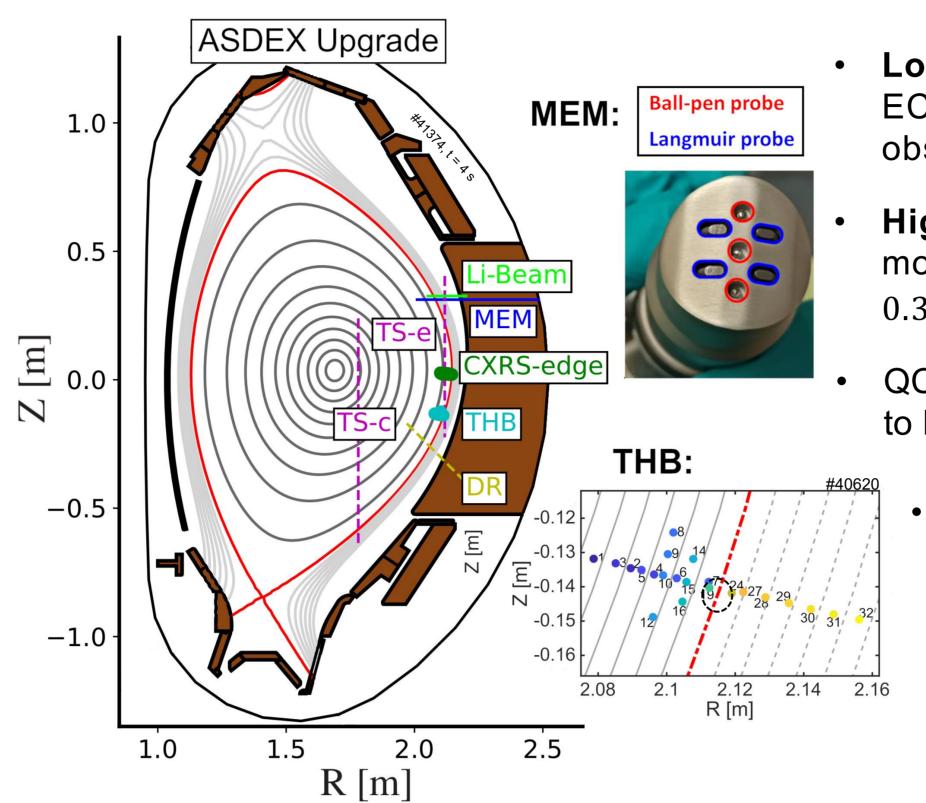
G. Grenfell*¹, T. Görler¹, J. Kalis¹, L. Gil², M. Dunne¹, P. Manz³, J. Adamek⁴, G. Birkenmeier^{1,5}, D. Brida¹, J. Cavalier⁴, G. D. Conway¹, M. Faitsch¹, M. Griener¹, T. Happel¹, T. Nishizawa⁶, M. Spolaore^{7,8}, C. Silva², U. Stroth^{1,5}, B. Vanovac⁹, E. Wolfrum¹, ASDEX Upgrade team^a, and the EUROfusion Tokamak Exploitation Team^a

¹Max-Planck-Institut für Plasmaphysik, ²Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal, ³Institute of Physics, University of Greifswald, Greifswald, Germany, ⁴Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, 182 00 Prague 8, Czech Republic, ⁵Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany, ⁶Research Institute for Applied Mechanics, Kyushu University, Japan, ⁷Consorzio RFX, 35127, Padova, Italy, ⁸Istituto per la Scienza e Tecnologia dei Plasmi (ISTP), CNR, Italy, ⁹Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA 02139, USA, aSee author list of H. Zohm et al 2024 Nucl. Fusion 64 112001, bSee author list of E. Joffrin et al 2024 Nucl. Fusion 64 112019.

INTRODUCTION


- The enhanced D-Alpha (EDA) H-mode is a promising ELM-free regime for ITER and a DEMO reactor [1,2];
- A quasi-coherent mode (QCM) around the separatrix enhances radially outward transport [3], likely preventing the pressure gradient from overcoming the peeling-ballooning limit;
- Characterizing the QCM drive instability is key to reliably extrapolating the EDA H-mode to future fusion devices.

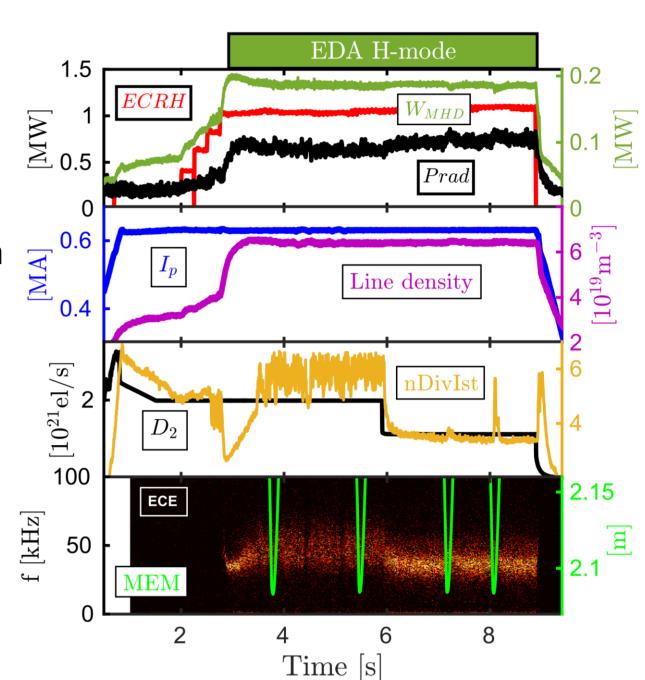
GOAL


Compare QCM experimental fingerprints with linear gyrokinetic simulations to identify potential QCM drivers.

2. MHD STABILITY ANALYSIS

- MHD stability analyses with the MISHKA code [6];
- The low-power EDA H-mode is stable against peeling ballooning stability -> enhanced pedestal transport by the QCM [3] likely clamps the pressure gradient below the limit.

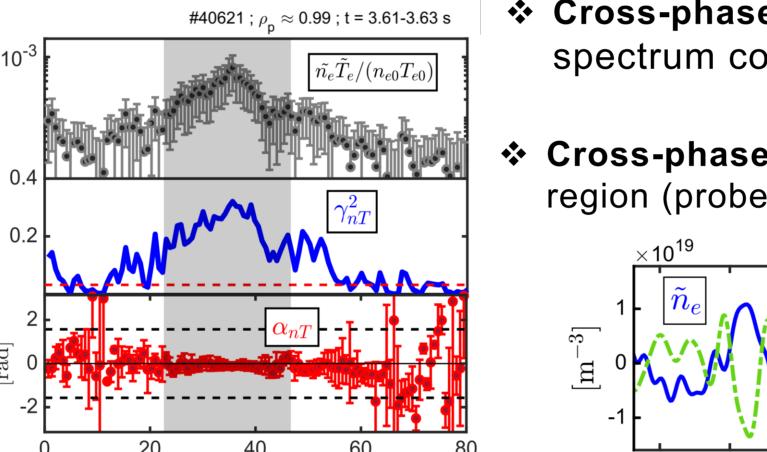
1. LOW POWER EDA H-MODE



- Low power EDA H-mode ($B_t = -2.5 \text{ T}$, plasma current 0.6 MA, and ECRH up to 1 MW) to maximize the number of experimental observables;
- High shaping favors EDA Hmode: $\kappa = 1.63$ and $\delta_{ava} =$ 0.39;
- QCM is visible after the transition \Rightarrow to EDA H-mode around 3 s;
 - measure the QCM here:

Midplane reciprocating

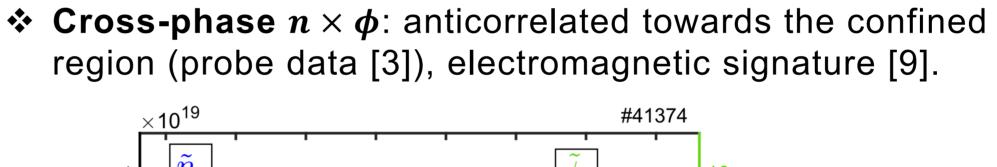
Main diagnostics to

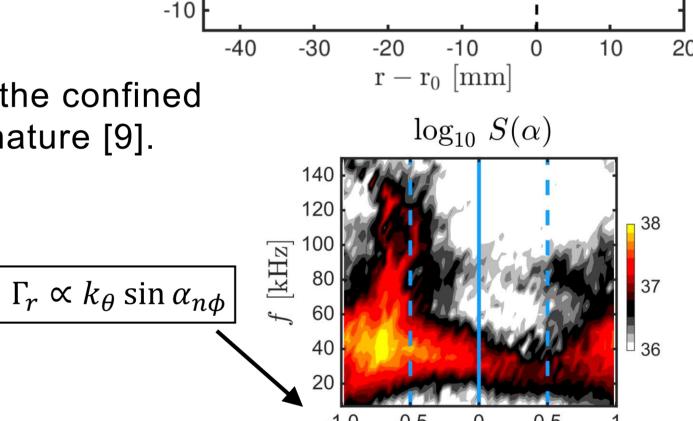

- probe (MEM) [4]; Themal helium beam
- (THB) [5].

#41377 #40620/ #40621

3. QCM TURBULENT FINGERPRINTS

- **❖** Radial localization, wavenumber, and phase velocity:
 - QCM is radially localized in the pedestal foot and center, spreading to the SOL;
 - Poloidal wavenumber: $k_{\theta} \rho_{s} = 0.02 0.05 \ (\rho_{s} = \sqrt{m_{i} T_{e}/eB}) \ [3,7];$
 - In the plasma frame, QCM propagation varies radially from the electron diamagnetic direction (EDD) to the ion diamagnetic direction (IDD) (within the error bars).

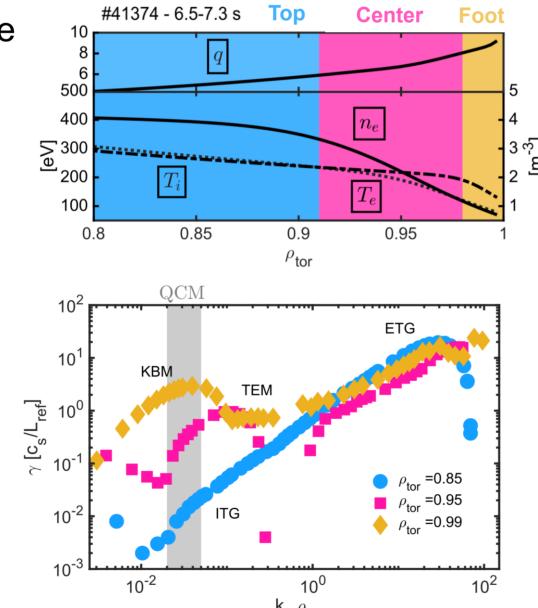



f [kHz]

Cross-phase $n \times T_e$: near zero (THB linearized spectrum correlation analysis [8]);

7176.2

time [ms]


0.87 0.90 0.94 0.97 $1.00 \rightarrow \rho_{tor}$

4. LINEAR GYROKINETIC SIMULATIONS

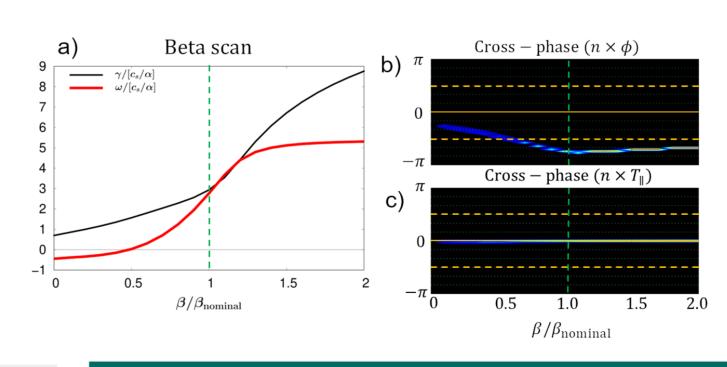
- Linear gyrokinetic simulations with the code GENE [10,11]:
- Maximum growth rate over the ballooning angles. Pedestal divided in Top, Center, and Foot;
- Dominant instabilities in each region:

Top: ITG and ETG **Center:** TEM and ETG Foot: KBM, TEM, and ETG

ITG: ion temperature gradient; ETG: electron temperature gradient; TEM: trapped electron mode; KBM: kinetic ballooning mode

6. BETA AND COLLISIONALITY SCAN ($\rho_{tor} = 0.99$)

7176.24

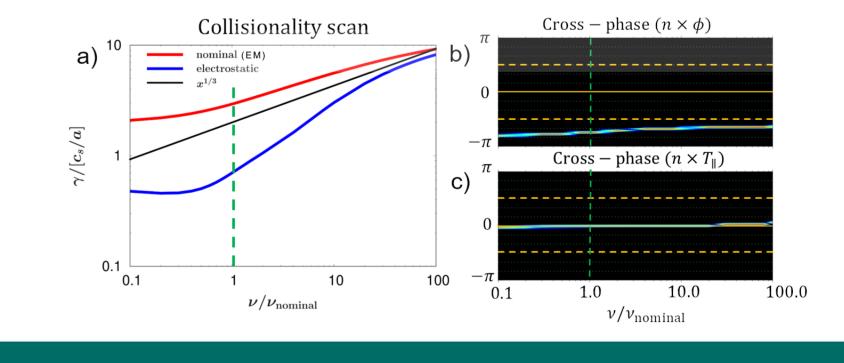

Sensitivity scan in beta:

7176.12

Mode growth rate (γ) and frequency (ω) change rapidly with β : KBM signature [12];

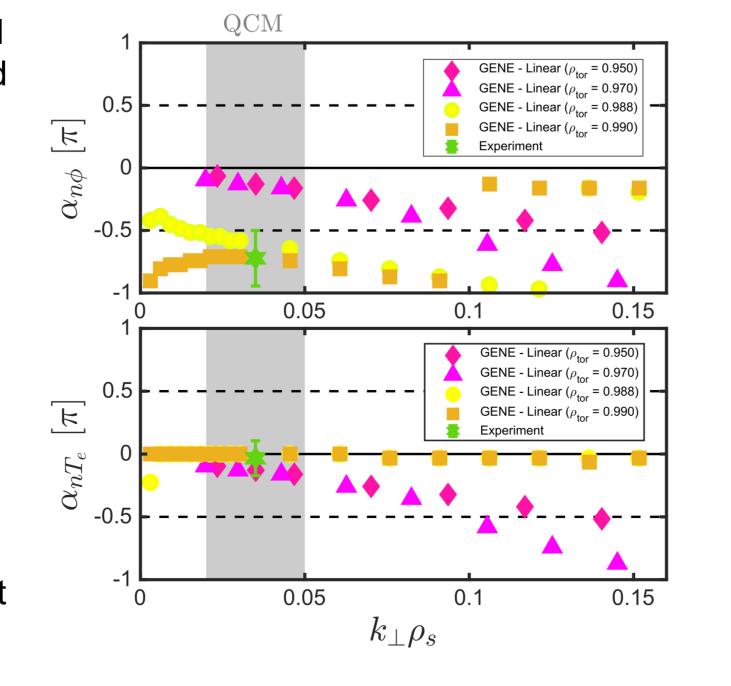
7176.16

- **Cross-phase** $n \phi$: close to $-\pi$ at high β and zero at low, i.e., drift-wave like [9];
- Cross-phase $n T_{e,\parallel}$: around zero.


Sensitivity scan collisionality:

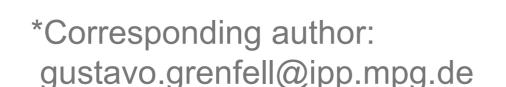
0.04 — QCM amplitude

a.u. 0.02


 $[\mathrm{km/s}]$

- Growth rate (γ) strongly depends on ν above nominal: for higher values, RBM scale [13];
- **Cross-phase** $n-\phi$: closer to $-\pi$ for low ν and $-\pi/2$ for high ν ;
- Cross-phase $n T_{e,\parallel}$: remains around zero.

5. COMPARISON WITH EXPERIMENT


- QCM is radially localized in the pedestal center and foot. At first glance, TEM and KBM are the main candidate;
- KBM growth rate is larger within QCM $k_{\perp}\rho_{s}$ range. TEM peaks at higher $k_{\perp}\rho_{s}$;
- QCM velocity in the co-moving (plasma) frame: KBM \rightarrow IDD; TEM \rightarrow EDD. However, significant uncertainties;
- Comparing the cross-phases → experimental $\alpha_{nT_{e}}$ and $\alpha_{n\phi}$ have good agreement with KBM linear fingerprint at the pedestal foot.

CONCLUSION

- A kinetic ballooning mode (KBM) in the pedestal foot is identified as the main candidate for the QCM drive instability based on comparisons between experimental fingerprints and local linear gyrokinetic simulations;
- **Global linear gyrokinetic simulations** with the nominal E_r also observed a KBM in the pedestal foot/center that shares similarities with the QCM (e.g., radial location and $\alpha_{n\phi}$);
- The good agreement with the linear simulations suggests that the linear character of the mode is preserved to some extent. Next step: non-linear gyrokinetic and global flux-driven simulations.
- [1] M. Greenwald et al., PoP 6, 1943 (1999)
- [2] L. Gil et al. NF 60, 054003 (2020)
- [3] G. Grenfell et al. NF 64 104002 (2024) [4] G. Grenfell et al., RSI, 023507 (2022)
- [5] M. Griener et al., RSI, 89, 10D102 (2018)
- [6] A. Mikhailovskii et al. PPR (1997)
- [7] T. J. Kalis et al. NF 64 016038 (2023)
- [8] T. Nishizawa et al., RSI, 92, 103501 (2021)
- [9] B. Scott. Book. Vol. 1 (2022)
- [10] F. Jenko et al. PoP 7 1904 (2000)
- [11] T. Görler et al. JCP 230(18), 7053-7071 (2011)
- [12] H. Doerk et al. PPCF (2016)
- [13] C. Bourdelle et al. PPCF 54 115003 (2012)

