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1. VIRTUAL CIRCUITS FOR REAL-TIME CONTROL 

In real-time control of a tokamak experiment, the plasma is shaped by magnetic fields from surrounding 

poloidal field (PF) coils, which must also incorporate the stray field from Ohmic coils that drive a plasma 

current [1]. Feed-forward coil sweeps are pre-computed, and control loops are designed to correct for any 

departures of the plasma control targets, on 0.1ms timescales. This is achieved through Jacobian shape matrices 

of derivatives of the control targets vs PF coil currents, and in particular through their pseudo-inverse Virtual 

Circuits (VCs) [2]. These quantify how the requested PF coil currents should differ to correct the measured 

observables towards the desired targets. VCs are pre-computed with finite-difference derivatives of shape 

targets vs PF currents, for a small number of reference stages in a shot. Different configurations require different 

VCs, so the accuracy of control is limited by the availability of VCs closest to the ones for a configuration 

observed in real time. With a large library of Grad-Shafranov (GS) equilibria, one can train fast and accurate 

emulators to the values of control targets as functions of the PF coil currents and plasma parameters (plasma 

current, toroidal current density profiles) [3]. To solve the forward GS problem, we use the purpose-built 

FreeGSNKE codebase [4,5,6]. FreeGSNKE has robust solvers of the GS equation that are robust against known 

nonlinear instabilities from Picard iterations. Being written in pure Python, it is seamlessly interfaceable with 

other libraries for parameter space exploration and machine learning. 

2. GENERATING A LARGE TRAINING SET, TRAINING AND TUNING EMULATORS 

As detailed by [7], entirely synthetic libraries can be built: starting from some reasonable parameter choices, a 

MCMC random walk sequentially samples the input parameters, privileging equilibrium configurations with 

desirable properties, avoiding parameter combinations resulting in problematic profiles or numerical issues in 

the integration of the GS equation. The random walk enables faster convergence of the GS solver, and the step 

sizes are adaptively adjusted. For work tailored on the MAST-U machine description [8], we start from 

snapshots of experiments as initial seeds for each MCMC chain. We obtain 5 million synthetic equilibria, 

including configurations encountered in MAST-U campaigns so far (including limited, diverted and super-X), 

and extend to yet-unseen configurations. To make the MCMC sampling even more efficient, we have extended 

the sequential sampler [9] to an asynchronous and scalable multi-walker algorithm, with surrogates of the score 

function to encourage steps towards promising parameter choices [10]. This approach works well for any 

problem that requires the traversal of a non-trivial simulation space. We train fully-connected, feed-forward 

neural networks (FNNs) to reproduce shape-control targets vs coil currents, plasma current, internal inductance 

and poloidal beta. We use early-stopping and learning-rate shrinkage by monitoring the FNN loss on a 20% 

validation set. We develop a Thompson sampler and annealing algorithm to optimise the architecture and 

learning hyperparameters [9,11]. Optimal models have 5-10 layers with 100-200 nodes per layer. The overall 

residual scatter, relative to the intrinsic scatter in the data, is below 1% and the relative bias is 0.03%.  

3. VIRTUAL CIRCUIT VALIDATION, SHAPING CURRENTS 

As a general testbed for VCs, we examine how equilibria change under PF current shifts from VCs computed 

via finite differences with FreeGSNKE. In general, linearisation and VCs perform relatively well on many 

equilibria, but some targets are harder to decouple (e.g. divertor gap and strike-point), as they would require 

higher-order changes around the lower X-point. The Jacobians of the FNNs, with respect to input currents, are 

also a good approximation of the finite-difference Jacobians. This is not a trivial result, as the universal 

approximation property is proved in the Lp norm but not on derivatives. The robustness in Jacobians likely stems 

from the very limited overfitting of the FNNs. Encouraged by these findings, FNN Jacobians are being 

implemented for real-time control on MAST-U. 
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In real-time control, incomplete information is available on currents in all metals, including passive structures, 

that can affect the shape of the equilibrium and hence the choice of appropriate VCs. At design stage, those are 

typically incorporated via an inverse GS solution to infer shaping currents that the active coils should have, with 

zero currents on passive structures, to produce the same equilibrium configuration as from a real shot. We have 

developed lean models to infer shaping currents in real time throughout a shot, based on the histories of 

measured coil and plasma currents, without the need to perform real-time GS equilibrium reconstruction.  

4. REINFORCEMENT LEARNING 

Reinforcement-learning (RL) policies naturally account for transients in vessel currents, which are 

neglected in the construction of (pre-computed or emulated) VCs [12,13,14]. Exploiting the stateful 

representation of FreeGSNKE, we train RL agents to control a set of shape targets, developing the 

FreeGSNKE-RL package [15]. An initial exploration shows that the best results are achieved when the 

RL agents must only learn corrections on top of pre-calculated feed-forward “coil sweeps”. Previous 

result in the literature have trained RL agents to learn the entire control policy, however the wide span in 

timescales (0.1ms for control over a 0.5s shot) hinders the efficient learning of zeroth-order sweeps 

[12,16]. Our preliminary results suggest that RL agents may improve with feed-forward information. 
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