Performance optimisation of tokamak operation in ASDEX Upgrade through novel feedback control capabilities

W. Treutterer*1, M. Biasizzo1, P. David1, E. Fable1, M. Gehring1, L. Giannone1, I. Gomez1, A. Gräter1, J. Illerhaus1, R. Kermenov¹, D. Kropackova^{1,2}, O. Kudlacek¹, G. Raupp¹, M. Reisner¹, B. Sieglin¹, M. Weiland¹, T. Zehetbauer¹, The ASDEX Upgrade Team¹ (see author list of H. Zohm et al, 2024 Nuclear Fusion https://doi.org/10.1088/1741-4326/ad249d) ¹Max-Planck-Institut für Plasmaphysik, Garching, Germany,

²Czech Technical University, Prague, Czech Republic

ABSTRACT

- Optimising the performance of tokamak operation needs a holistic approach with a focus on the effective interplay of all control system components.
- Control performance must account for individual function performance and the performance of the integrated system.
- The ASDEX Upgrade Discharge Control System (DCS) addresses these aspects by robust algorithms for measurement data processing and state estimation, a versatile feedback control suite, actuator management and customisable pulse supervision control, reacting to events and plasma state conditions.
- Performant operation should start with proper preparation of scenarios and control strategies. Fenix, a fast "flight simulator" assists in scenario design, validation and control method development.
- Optimisation methods and experience should be applicable to even larger and more complex fusion devices such as ITER and DEMO.

CONCLUSION

- Performant tokamak operation is a moving target with structural, functional and organisational aspects.
- Efficient structuring of the control system and workflows is the most persistent investment.
- Real-time diagnostics, model-based observers and actuator management are key components for precise and efficient feedback control.
- Machine learning is expected to resolve computational bottlenecks in equilibrium and transport solvers or in pattern recognition for control in real-time.
- Rule-based shot sequence automation for parameter studies or scenario optimisation can save significant experiment time.
- Flight simulators like Fenix accelerate the turnaround time from design to exploitation by proper pulse preparation and control room validation.

STRUCTURAL OPTIMISATION

Architecture addresses performance requirements: reliable, flexible, maintainable, separation of concerns

DCS: modular control system framework adhering to SOLID principles, generic, configuration-driven functionality

Machine Learning: real-time inference on GPU, generic pipeline for data processing, training and inference

Compact Controllers: attached to actuation groups, salactable control objectives and nolicies

selectable control objectives and policies		
Controller	Actuators	Control objectives
Plasma current	Central solenoid current	Plasma current
Plasma position	2 Control coil currents	Plasma centre or outer radius
Plasma shape	8 PF coil currents	Strike points, triangularity, elongation
Gas and pellet fuelling	3 gas channels, 1 pellet centrifuge	n _{e core} , n _{e edge} , n ₀
Radiation	2 impurity gas channels	P _{rad} , T _{divertor} , Xpoint-radiation, MARFE
Heating, current drive and MHD	8 NBI sources, 8 ECRH gyrotrons, 4 ECRH mirrors, 2 ICRH antennae	β_{pol} , P_{heat} , P_{ion} , local heating and current drive, MHD, alpha heating simulation
Error field (prelim. fuelling control)	16 RPM coil currents	ELM suppression, density pump-out

Actuator Management: flexibly group alike actuators,

FUNCTIONAL OPTIMISATION

Enhance the performance of individual functions: precision, stationary errors, overshoot, response time, cross-coupling, disturbance rejection, robustness

Examples:

RABBIT: physics code to real-time observer

RAPTOR: model-based transport observer with Extended Kalman filter for ASDEX Upgrade

-Total Heating Power

Total Radiation

ORGANISATIONAL OPTIMISATION

Efficiently use the experimental time: thorough pulse planning and validation, compacted execution using automation

Fenix Flight Simulator: validation and design of new scenarios and control methods, here ff versus fb control

Fenix-DCS: SIL coupling of DCS with ASTRA instead of AUG plant, fast control room validator; under development

Automated Schedules: rule-based disruption avoidance, parameter scans and optimum searches in a single pulse

 \sum_{i}

O. Kudlacek, Nucl. Fusion 64 056012

^{*} corresponding author: Wolfgang.Treutterer@ipp.mpg.de