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Abstract
As fusion research advances toward sustainable energy production, reliable prediction of key plasma events is essential for safe tokamak operation [1]. Machine learning (ML) has emerged as a
promising approach for such tasks, leveraging large volumes of diagnostic data [2—5]. While fusion facilities are beginning to endorse open data [6, 7, 8], and several closed databases of tokamak
event data have been curated [9, 10, 11], the lack of standardized, open benchmarks and data currently impedes reproducibility and the systematic comparison of machine learning algorithms in
fusion research. To address this gap, we present ongoing work towards curating event annotations and baseline ML models for four representative tasks: disruption prediction, MHD segmentation,
confinement-mode classification, and ELM detection, providing reproducible reference implementations for future data-driven studies.
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Benchmark

Our interactive diagnostic annotation tool used to label ELMs, confinement modes, MHD modes and disruptions
across key signals. We use this to generate ground truth labels for each of the four tasks considered

Tasks Ground truth examples
Four machine learning tasks were identified including 1) ELM identification,

_ = _ Example annotations curated from the data annotation stage
2) confinement mode classification, 3) MHD modes segmentation, 4) and
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« Limitation: Ambiguous cases without sharp current drop remain
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« Early predictions when flat-top phase is unclear. 0-10 . >4
« Performance declines as lead time increases (tested 10/30/60 ms). H Time (s) 2
and segmented MHD modes separated by type @ 31
MHD mode segmentation g e . . E 2
» Theory: Plasma instabilities (LLM, fishbones, NTMs, sawteeth) reduce g J\ e e an0s | 811 ,L/f“\U—L_LL
performance and may trigger disruptions. 5 0s0- L FlatTop ! | 222 facion endo.ses 8, | . | . | lL | |
« Ground truth: Hand labelled using spectrogram annotation tool using g 0251 | | L Disruption=0.34s 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mirnov coil data (85 shots). B 000 - — - — e Time (s)
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 Limitation: High-frequency structures hard to label; non-expert
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* Theory: Transition between low confinement (L) and high (H) confinement. ; ©
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ELM spike identification >4
* Theory: Short bursts during H-mode, crucial for plasma—wall interaction. o ..
« Ground truth: Thresholding on Da + manual verification (101 shots). 2
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- Baselines provide starting points but are not yet full benchmarks. Top-left: MHD segmentation (predicted vs labelled contours). < =
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* Limitations include annotation noise and label misalignments. interval). S I
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* Disruption early-warning: hit-rate 0.63; median warning 26.5 ms. Alarms earlier than 50 ms are counted
as premature (not true positives).
¢ Datasets: @ fair-mast/fair-mast-datasets T private  Following B FAIR MAST project 4 « Segmentation (MHD): report loU; note it heavily penalises thin modes (LLMs).
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The FAIR-MAST repository will host curated Al-ready diagnostic data and event

annotations from MAST, supporting reproducible ML research for community use. Sz 2022 bedte) e B2t bedert BL1e D e WDy
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