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Abstract
• Reliable prediction of disruptions, MHD modes, confinement transitions, and ELMs is essential for safe tokamak operation.
• FAIR-MAST [1,2] provides open access to MAST diagnostic data, but further processing is required to make it “AI-ready”.
• We curate annotations and develop baseline ML models for four tasks: disruption, MHD segmentation, confinement mode, and ELMs.
• Baselines provide starting points for reproducible studies and future benchmarks.

Introduction
• FAIR-MAST signals curated and prepared for ML tasks.
• Annotation process (see right).
• Label review + model feedback loop (under construction).
• Outputs: baseline models and metrics.
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Disruption prediction
• Theory: Sudden loss of plasma confinement; must predict with 

warning time [3].
• Ground truth: Auto-detected from plasma current (417 shots).
• Model: Stacked BiLSTM with weighted sampling and sliding time 

window.
• Limitation: Ambiguous cases without sharp current drop remain 

unresolved.
• Early predictions when flat-top phase is unclear.
• Performance declines as lead time increases (tested 10/30/60 ms).

MHD mode segmentation
• Theory: Plasma instabilities (LLM, fishbones, NTMs, sawteeth) 

reduce performance and may trigger disruptions [4].
• Ground truth: Semi-automated spectrogram annotation from Mirnov 

coils (85 shots; 51 containing LLM).
• Model: Mask R-CNN with ResNet-101 backbone.
• Limitation: High-frequency structures hard to label; non-expert 

annotations.
• IoU is extremely low because LLMs are thin structures; small 

misalignments penalise overlap heavily.

Confinement mode classification
• Theory: Transition between L-mode (low confinement) and H-mode 

(high confinement) [5].
• Ground truth: H-mode intervals hand-labelled by expert (85 shots).
• Model: 1D U-Net with sliding time window.
• Limitation: Label boundaries may misalign by tens of ms.

ELM spike identification
• Theory: Short bursts during H-mode, crucial for plasma–wall 

interaction [6].
• Ground truth: Thresholding on Dα + manual verification (101 shots).
• Model: 1D U-Net with sliding time window.
• Limitation: Narrow spikes → metrics sensitive to small 

misalignments.

Ground truth examples (different shots 
shown for illustration):
Top-left: MHD mode segmentation
Top-right: Confinement mode classification
Middle-right: ELM spike identification
Bottom-right: Disruption prediction

Baseline model predictions:
Top-left: MHD segmentation (predicted vs labelled 
contours).
Top-right: Confinement classification (predicted H-mode 
interval).
Middle-right: ELM detection (predicted spikes in Dα).
Bottom-right: Disruption prediction (lead time vs true 
disruption).
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Task Confinement ELMs MHD modes Disruption

Precision 0.82 ± 0.22 0.79 ± 0.20 0.75 ± 0.13 0.84 ± 0.07

Recall 0.83 ± 0.21 0.80 ± 0.20 0.73 ± 0.15 0.94 ± 0.06

F1-score 0.79 ± 0.25 0.78 ± 0.20 0.72 ± 0.10 0.87 ± 0.09

IoU - - 0.39 ± 0.01 -

ROC AUC 0.90 0.85 - -

Metrics
• Accuracy omitted: dominated by background; misleading for event detection.
• Classification - Confinement & ELMs: Precision/Recall/F1 + ROC AUC. Disruption: Precision/Recall/F1 

only; ROC AUC omitted (unreliable under extreme temporal imbalance + windowing).
• Disruption early-warning: hit-rate 0.63; median warning 26.5 ms. Alarms earlier than 50 ms are counted 

as premature (not true positives).
• Segmentation (MHD): report IoU; note it heavily penalises thin modes (LLMs).

Conclusion & Future Work
• Baselines provide starting points but are not yet full benchmarks.
• Limitations include annotation noise and label misalignments.
• Current metrics do not fully capture thin/filamentary structures.
• Future work:

• Improve label quality via review + model feedback.
• Extend baselines towards an open benchmark suite with 

annotation and data tools.
• Release datasets and models openly for community use.
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AI-ready FAIR-MAST dataset (under construction)


