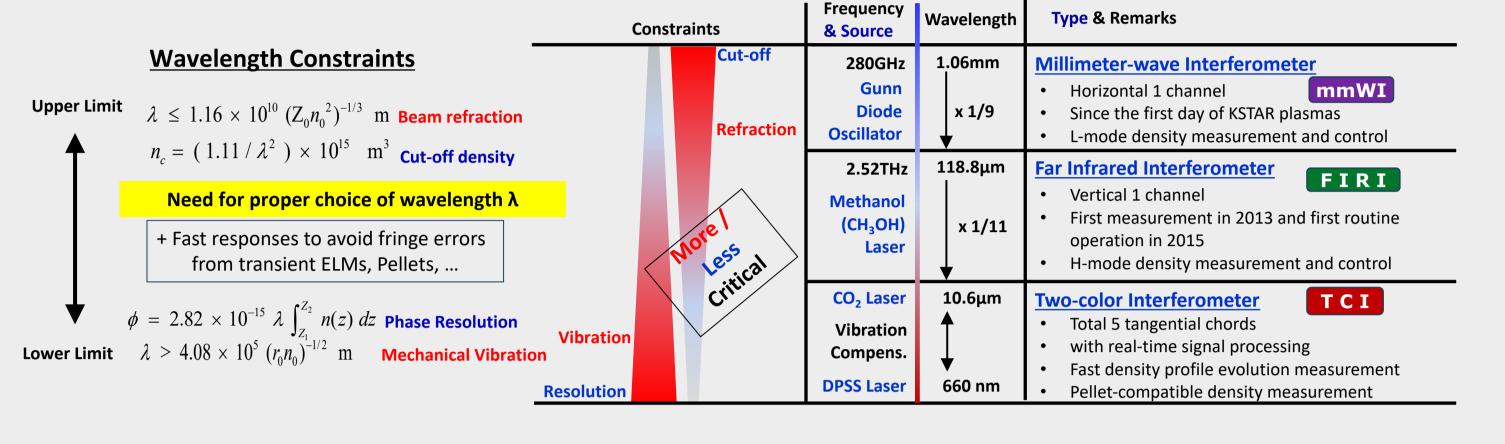


PROGRESS ON REAL-TIME DENSITY CONTROL CAPABILITY OF THE KSTAR TOKAMAK

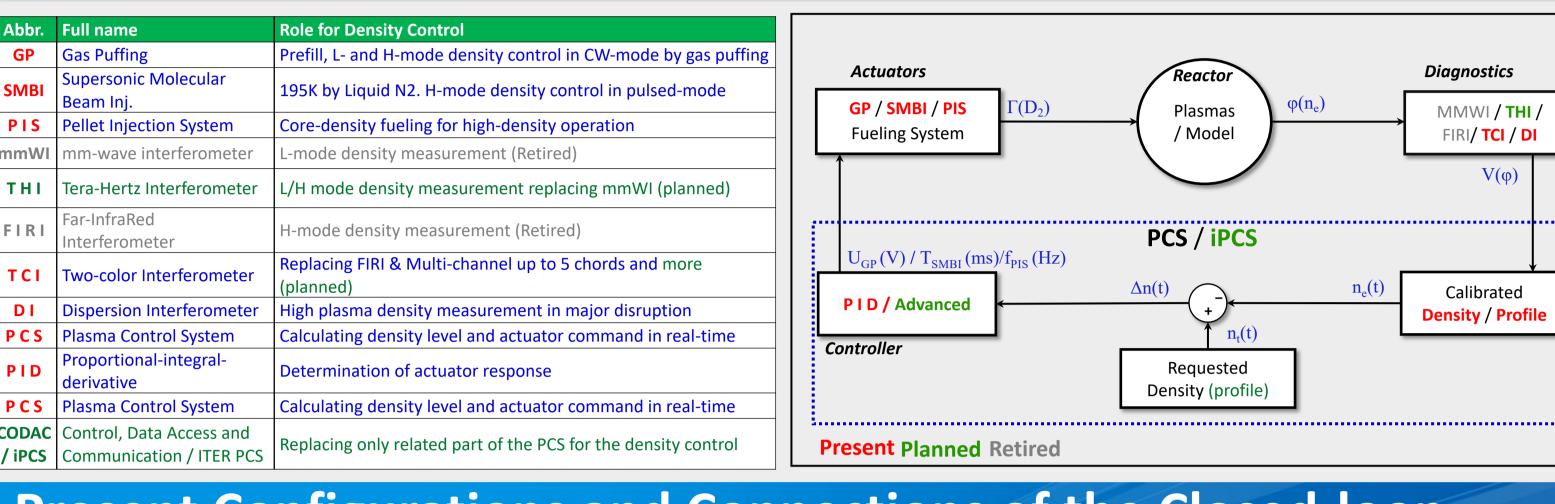
<u>June-Woo Juhn</u>^{a,*}, Y. U. Nama, K. C. Leea, Y. S. Kima, T. G. Leea, J. I. Songa, S. H. Parka, S. H. Hahna, H. Hana, Y. H. Leea, B.S. Kima, J. M. Leea, E. Schusterb, V. Graberb, H. Al Khawaldehb, S. T. Paruchurib and A. Pajaresc

^a Korea Institute of Fusion Energy, Republic of Korea ^b Lehigh University, PA USA ^c General Atomics, CA USA 30th IAEA Fusion Energy Conference 2025 Tianfu International Convention Center 13-18 Oct. 2025, Chengdu, China

*jwjuhn@kfe.re.kr

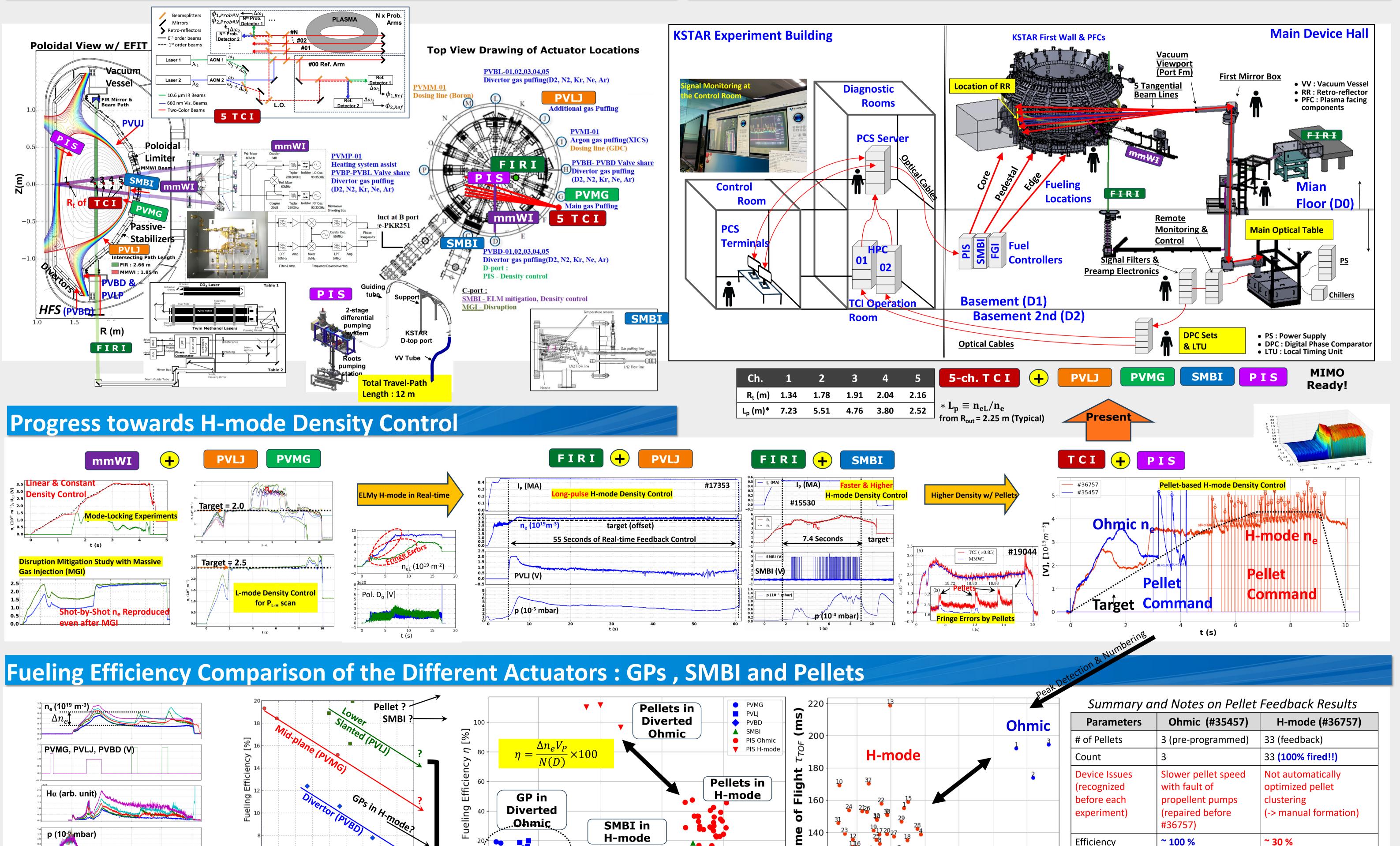

Abstract

- Establishment of multi-input-multi-output (MIMO) capable H-mode density control system on KSTAR
- Real-time measurement has been improved from mm-Wave Interferometer (mmWI) and far infrared interferometer (FIRI) to 5+ chords infrared two-color interferometer. (TCI)
- Gas puffing (GP), supersonic molecular beam injection (SMBI) and the inboard pellet injection system (PIS) are demonstrated their working on SISO density controls with different combinations such as basic GPs + mmWI, GPs + FIRI for long pulse H-mode, SMBI+FIRI for faster H-mode and pellet + TCI for core fueling on the higher H-mode plasma densities


References

- Soo-Hwan Park, et al., "Development of pellet injection system for KSTAR," Fusion Eng. Des. 123 (2017) 163
- Soo-Hwan Park, et al., "Preparation of KSTAR pellet injection system for advanced plasma scenarios," Fusion Eng. Des. 216 (2025) 115121
 XO Kim, et al., "Control and energtion of the age injection systems for KSTAR tokamak," Fusion Eng. Des. (2013) 1133.
- Y.O. Kim, et al., "Control and operation of the gas injection systems for KSTAR tokamak," Fusion Eng. Des. (2013) 1132
 J. I. Song, "Lecture on the KSTAR Fueling System," KFE Internal Report (2024)
- J. I. Song, "KSTAR Fuel System Calibration Results of 18th Campaign," Internal Report (2025)
- Y. U. Nam, K. D. Lee, "A 280 GHz single-channel millimeter-wave interferometer system for KSTAR," Rev. Sci. Instrum., vol. 79, (2008) 10E705
 J.-W. Juhn, et al., "Operation results of the KSTAR far infrared interferometer," Rev. Sci. Instrum., vol. 87 (2016) 11E131
- K. C. Lee, et al., "The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR," Fusion Eng. Des., vol. 113 (2016) 85.
 J.-W. Juhn, et al., "Multi-chord IR-visible two-color interferometer on KSTAR," Rev. Sci. Instrum., vol. 92 (2021) 043543

Real-time Density Measurement Sources



Closed Loop Configurations on the KSTAR Tokamak

Setup and Locations of the Measurements & Actuators

Present Configurations and Connections of the Closed-loop

 $n_{e, 0}$ (10¹⁹ m⁻³)

Conclusion & Future Plans

Fueling Efficiency Test

- Beginning from the mmWI and FIRI for basic L-mode and H-mode density measurements in real-time,
- The 5-chord TCI provides robust real-time density signals including the fast density responses on pellet injections as well as provides the density profile. The number of TCI chords will be doubled in the near future for more detail profile investigation.
- The full actuators are operating on KSTAR tokamak including GPs, SMBI, and inboard pellets.
- The fueling efficiencies from GP reduces significantly in higher density plasmas while pellet shows large amount of consumption both in Ohmic (100%) and H-mode discharges (30%). However, the dramatic degradation of efficiency in H-mode needs to be investigated further. The first inversion from 5-chord TCI showed density rise only at the pedestal top region of the H-mode while strong core peaking of the density profile was observed by firing slow pellets in Ohmic plasmas.
- SMBI is not as efficient as pellets but it is reasonably effective in H-mode for faster and higher fueling of plasmas with moderate efficiencies about 15%.
- Pellet-based density control was demonstrated in KSTAR for the first time with the real-time TCI measurements.
- MIMO control is capable for the density profile control. It already started with pedestal top height control.
- An advanced control schemes will be applied such as model-reference-adaptive controls for ITER density regulation activities.

Measured Eff. of GPs

Acknowledgements

This research was supported by R&D Program of "High Performance Tokamak Plasma R&D (EN2501)" through the Korea Institute of Fusion Energy (KFE) funded by the Government of Republic of Korea.

Inversion of TCI for Density Profile Responses on the Pellet Injections #35457 — Ch.#03 **5.30** 3.15 3.20 3.25 3.30 Ohmic #1 H-mode # → 3.180 (s) --- 3.190 (s) → 3.200 (s) → 3.210 (s) **→** 3.220 (s) n_e(10¹⁹*m*⁻ --- 5.150 (s) → 5.160 (s) → 5.170 (s) **→** 5.180 (s)

1.0 1.5 2.0 2.5 3.0

Density Peak Δn_e (10¹⁹ m^{-3})

1.6

R(m)

2.0

2.2

~ 180 ms

1.4

~ 140 ms

2.0