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The rapid evolution of artificial intelligence has opened new avenues for
overcoming computational bottlenecks inherent in traditional simulation
methods. In the context of energetic particle dynamics, conventional single-
particle tracking algorithms rely heavily on precise numerical solvers for
long-term evolution processes, leading to prohibitive computational costs
in large-scale systems or high-temporal-resolution scenarios. Neural
networks, as surrogate models, offer a transformative potential to replace
these resource-intensive methods at a fraction of the computational cost.

Some recently developed approaches predominantly rely on soft physical
constraints through optimization, resulting in approximations that may
deviate from strict physical consistency. This limitation underscores a

critical gap in enforcing structural-level physical priors within neural
architectures.

Innovative Integration of Symmetry Principles

Recent advances in deep learning have revealed that embedding
explicit symmetries—fundamental invariants pervasive in mathematical

and physical systems—into neural architectures significantly enhances

model generalizability. Pioneering works across domains, such as Clebsch-
Gordan decomposition-based Lorentz group-equivariant networks for
relativistic particle physics, rotation-invariant convolutional networks for
Navier-Stokes equations, and tensor-basis neural networks (TBNNs) for
turbulence modeling, collectively demonstrate that symmetry-aware

architectures outperform conventional models in both accuracy and
interpretability. Here we propose a type of OPERATOR NEURAL NETWORKS

WITH SPATIAL TRANSLATION INVARIANCE (ONNSTI), which treats EM fields
as an operator and processes inherent translation symmetry.
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The architecture and Simulations Results of the ONNSTI Model

Methodology and Techniques

ONNSTI pioneers a symmetry-hardened neural operator framework for
charged particle dynamics simulation, explicitly embedding spatial
translation invariance—a cornerstone symmetry governing conservation of
momentum and system evolution—into the network architecture. Unlike
prior works that either approximate symmetries via loss function (e.g.,
Hamiltonian/Lagrangian neural networks) or focus on non-physical
invariants, the new approach rigorously enforces symmetry constraints at
the structural level, ensuring strict adherence to physical laws and broad
generalization of applications. Key innovations include:

Theoretical Foundation: A mathematical formulation of the necessary
conditions for spatial translation invariance in neural operators, bridging
abstract symmetry principles with implementable architectural designs.
Architectural Innovation: A novel neural operator architecture that
intrinsically satisfies translation invariance, eliminating reliance on ad-hoc
regularization.

Validation Paradigm: Comprehensive numerical benchmarks against state-
of-the-art methods (e.g., baseline neural operators, traditional numerical

simulations based on geometric algorithms), demonstrating superior

accuracy and generalizability to unseen field configurations.

By unifying deep learning with Noether's theorem—the profound link
between symmetries and conservation laws—this work establishes a
paradigm shift in physics-informed Al. It not only advances energetic

particle simulations but also provides a blueprint for embedding

fundamental physical principles into neural architectures, with
transformative potential for plasma physics, astrophysics, and quantum
systemm modeling. The methodology’s success in maintaining physical
consistency while achieving computational efficiency (10-20 X speedup vs.
traditional solvers) positions it as a critical tool for next-generation

multiscale simulations in fusion research and plasma physics.
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