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Recent advances in deep learning have revealed that embedding 
explicit symmetries—fundamental invariants pervasive in mathema8cal 
and physical systems—into neural architectures significantly enhances 
model generalizability. Pioneering works across domains, such as Clebsch-
Gordan decomposi8on-based Lorentz group-equivariant networks for 
rela8vis8c par8cle physics, rota8on-invariant convolu8onal networks for 
Navier-Stokes equa8ons, and tensor-basis neural networks (TBNNs) for 
turbulence modeling, collec8vely demonstrate that symmetry-aware 
architectures outperform conven8onal models in both accuracy and 
interpretability. Here we propose a type of OPERATOR NEURAL NETWORKS 
WITH SPATIAL TRANSLATION INVARIANCE (ONNSTI), which treats EM fields 
as an operator and processes inherent transla8on symmetry.

Innovative Integration of Symmetry Principles

ONNSTI pioneers a symmetry-hardened neural operator framework for 
charged par8cle dynamics simula8on, explicitly embedding spa8al 
transla8on invariance—a cornerstone symmetry governing conserva8on of 
momentum and system evolu8on—into the network architecture. Unlike 
prior works that either approximate symmetries via loss func8on (e.g., 
Hamiltonian/Lagrangian neural networks) or focus on non-physical 
invariants, the new approach rigorously enforces symmetry constraints at 
the structural level, ensuring strict adherence to physical laws and broad 
generaliza8on of applica8ons. Key innova8ons include:
Theore&cal Founda&on: A mathema8cal formula8on of the necessary 
condi8ons for spa8al transla8on invariance in neural operators, bridging 
abstract symmetry principles with implementable architectural designs.
Architectural Innova&on: A novel neural operator architecture that 
intrinsically sa8sfies transla8on invariance, elimina8ng reliance on ad-hoc 
regulariza8on.
Valida&on Paradigm: Comprehensive numerical benchmarks against state-
of-the-art methods (e.g., baseline neural operators, tradi8onal numerical 
simula8ons based on geometric algorithms), demonstra8ng superior 
accuracy and generalizability to unseen field configura8ons.

Methodology and Techniques
The rapid evolu8on of ar8ficial intelligence has opened new avenues for 
overcoming computa8onal boXlenecks inherent in tradi8onal simula8on 
methods. In the context of energe8c par8cle dynamics, conven8onal single-
par8cle tracking algorithms rely heavily on precise numerical solvers for 
long-term evolu8on processes, leading to prohibi8ve computa8onal costs 
in large-scale systems or high-temporal-resolu8on scenarios. Neural 
networks, as surrogate models, offer a transforma8ve poten8al to replace 
these resource-intensive methods at a frac8on of the computa8onal cost. 
Some recently developed approaches predominantly rely on soZ physical 
constraints through op8miza8on, resul8ng in approxima8ons that may 
deviate from strict physical consistency. This limita8on underscores a 
cri8cal gap in enforcing structural-level physical priors within neural 
architectures. 

Introduc;on

The architecture and Simula0ons Results of the ONNSTI Model 

By unifying deep learning with Noether's theorem—the profound link 
between symmetries and conserva8on laws—this work establishes a 
paradigm shiZ in physics-informed AI. It not only advances energe8c 
par8cle simula8ons but also provides a blueprint for embedding 
fundamental physical principles into neural architectures, with 
transforma8ve poten8al for plasma physics, astrophysics, and quantum 
system modeling. The methodology’s success in maintaining physical 
consistency while achieving computa8onal efficiency (10-20× speedup vs. 
tradi8onal solvers) posi8ons it as a cri8cal tool for next-genera8on 
mul8scale simula8ons in fusion research and plasma physics.

Discussions
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characteristics of discrete dynamical systems—where state evolution manifests
as incremental updates of phase space coordinates, this study selects a Residual
Multilayer Perceptron (Residual MLP) with residual connections as the funda-
mental modeling framework. The specific architecture of the network is shown
in Figure 1.

Figure 1: The architecture of our proposed model

The residual block is the core component of the network. The standard
design of a residual block consists of two fully connected layers (FC layers), a
nonlinear activation layer (such as ReLU), and a residual connection path: the
input signal first undergoes feature transformation through the first fully con-
nected layer, then introduces nonlinearity via the activation layer, and further
extracts higher-order features through the second fully connected layer. Ulti-
mately, the output of the second fully connected layer is added element-wise to
the original input to form the output of the residual block. This ”skip connec-
tion” mechanism e↵ectively alleviates the vanishing gradient problem in deep
networks while preserving the integrity of the input information.

From the overall structure perspective, the network input is first mapped
to the width of the residual block through a fully connected layer to ensure
matching feature dimensions. After being processed by several cascaded resid-
ual blocks, an intermediate feature representation is obtained. The number
and width of the residual blocks can be determined based on specific task re-
quirements, either through empirical values or experimental tuning. Finally,
the intermediate features are mapped to the target dimension through a fully
connected layer to complete the output of the discrete evolution rule.

Based on the aforementioned baseline model architecture, by incorporating
the electromagnetic field operator defined earlier and integrating the spatial
translation invariance constraint, a charged particle evolution network that sat-
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