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1. INTRODUCTION 

The rapid evolution of artificial intelligence has opened new avenues for overcoming computational bottlenecks 

inherent in traditional simulation methods. In the context of energetic particle dynamics, conventional single-

particle tracking algorithms rely heavily on precise numerical solvers for long-term evolution processes, leading 

to prohibitive computational costs in large-scale systems or high-temporal-resolution scenarios. Neural 

networks, as surrogate models, offer a transformative potential to replace these resource-intensive methods at a 

fraction of the computational cost. While recent studies—such as Linlin Zhong et al.'s physics-informed neural 

networks (PINNs) for transient-state predictions in low-temperature plasmas, Diogo D. Carvalho et al.'s graph 

neural networks for 1D plasma dynamics, and Vignesh Gopakumar et al.'s Fourier neural operators for 

magnetohydrodynamic plasma modeling—demonstrate progress, these approaches predominantly rely on soft 

physical constraints through optimization, resulting in approximations that may deviate from strict physical 

consistency. This limitation underscores a critical gap in enforcing structural-level physical priors within neural 

architectures. 

2. INNOVATIVE INTEGRATION OF SYMMETRY PRINCIPLES 

Recent advances in deep learning have revealed that embedding explicit symmetries—fundamental invariants 

pervasive in mathematical and physical systems—into neural architectures significantly enhances model 

generalizability. Pioneering works across domains, such as Clebsch-Gordan decomposition-based Lorentz 

group-equivariant networks for relativistic particle physics, rotation-invariant convolutional networks for 

Navier-Stokes equations, and tensor-basis neural networks (TBNNs) for turbulence modeling, collectively 

demonstrate that symmetry-aware architectures outperform conventional models in both accuracy and 

interpretability. Despite these strides, existing symmetry-driven frameworks predominantly focus on geometric 

or algebraic invariants (e.g., permutation equivariance, rotational invariance in graph networks, or parity 

symmetry), often neglecting spatiotemporal symmetries—such as spatial translation invariance—that govern 

fundamental conservation laws in physics. This oversight highlights a critical opportunity for innovation. 

3. METHODOLOGICAL AND TECHNICAL 

This study pioneers a symmetry-hardened neural operator framework for charged particle dynamics simulation, 

explicitly embedding spatial translation invariance—a cornerstone symmetry governing conservation of 

momentum and system evolution—into the network architecture. Unlike prior works that either approximate 

symmetries via loss function (e.g., Hamiltonian/Lagrangian neural networks) or focus on non-physical 

invariants, our approach rigorously enforces symmetry constraints at the structural level, ensuring strict 

adherence to physical laws. Key innovations include: 

Theoretical Foundation: A mathematical formulation of the necessary conditions for spatial translation 

invariance in neural operators, bridging abstract symmetry principles with implementable architectural designs. 

Architectural Innovation: A novel neural operator architecture that intrinsically satisfies translation invariance, 

eliminating reliance on ad-hoc regularization. 

Validation Paradigm: Comprehensive numerical benchmarks against state-of-the-art methods (e.g., baseline 

neural operators, symmetry-regularized HNN/LNN variants), demonstrating superior accuracy and 

generalizability to unseen field configurations. 
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4. BROADER IMPLICATIONS 

By unifying deep learning with Noether's theorem—the profound link between symmetries and conservation 

laws—this work establishes a paradigm shift in physics-informed AI. It not only advances energetic particle 

simulations but also provides a blueprint for embedding fundamental physical principles into neural 

architectures, with transformative potential for plasma physics, astrophysics, and quantum system modeling. 

The methodology’s success in maintaining physical consistency while achieving computational efficiency (10-

20× speedup vs. traditional solvers) positions it as a critical tool for next-generation multiscale simulations in 

fusion research and plasma physics. 
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[7] R. González-García, R. Rico-Martìnez, I.G. Kevrekidis, Identification of distributed parameter systems: A neural net 

based approach, Comput. Chem. Eng. 22 (1998) S965–S968.  

[8] R. Rico-Martinez, J. Anderson, I. Kevrekidis, Continuous-time nonlinear signal processing: a neural network based 

approach for gray box identification, in: Proceedings of IEEE Workshop on Neural Networks for Signal Processing, 

IEEE, 1994, pp. 596–605.  

[9] R. Rico-Martinez, I.G. Kevrekidis, Continuous time modeling of nonlinear systems: A neural network-based approach, 

in: IEEE International Conference on Neural Networks, IEEE, 1993, pp. 1522–1525.  

[10] T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, in: Advances in Neural 

Information Processing Systems 31, 2018, pp. 6572–6583.  

[11] Aiqing Zhu, Beibei Zhu, Jiawei Zhang, Yifa Tang, Jian Liu. VPNets: Volume-preserving neural networks for learning 

source-free dynamics, Journal of Computational and Applied Mathematics, 416,15(2022) 114523 

 


