A Physics-Informed Neural Network for Real-Time, Data-Efficient Plasma

Equilibrium Reconstruction in SUNIST-2

Yuhang Luo^{1*}, Borui Jiang¹, Yifeng Zhang², Ling Ma¹, Binbin Wang^{1,2}, Shouzhi Wang¹, Yitan^{1,2}, Rui Chen¹

¹Startorus Fusion, Xi'an, China, ² Department of Engneering Physics, Tsinghua University, Beijing, China

luoyh15@gmail.com*

ABSTRACT

- Equilibrium evolution and real-time reconstruction are critical challenges in magnetic confinement fusion, especially for the fast-changing plasmas in SUNIST-2.
- •We present a Deep Operator Neural Network (**DeepONet**)[1] framework that unifies Grad-Shafranov constraints, and diagnostic data.
- Trained on only ~100 discharges, our model achieves **real-time reconstruction without labels** and shows strong generalization.
- This framework can also be extended to build plasma evolution models, enabling data-driven plasma control.

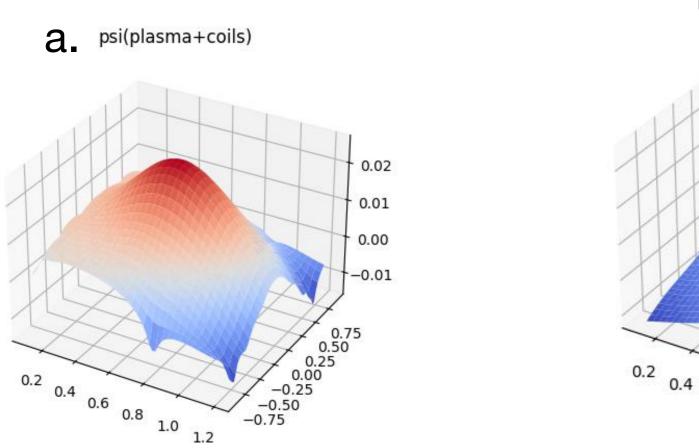
BACKGROUND

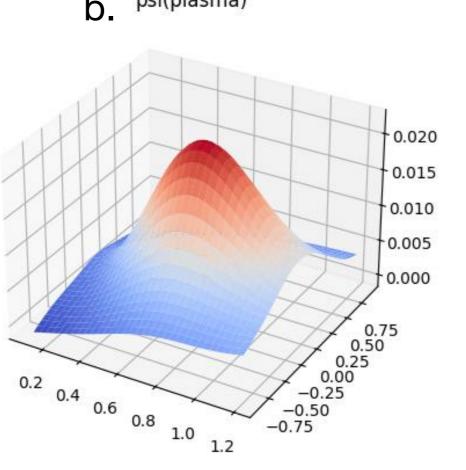
- Real-time control needs real-time equilibrium.
- SUNIST-2 plasmas change fast and violently.
- rt-EFIT limited by speed-accuracy trade-off.
- •Surrogate models with neural networks → balance speed & accuracy, enable robust real-time reconstruction.

METHODS

Dataset

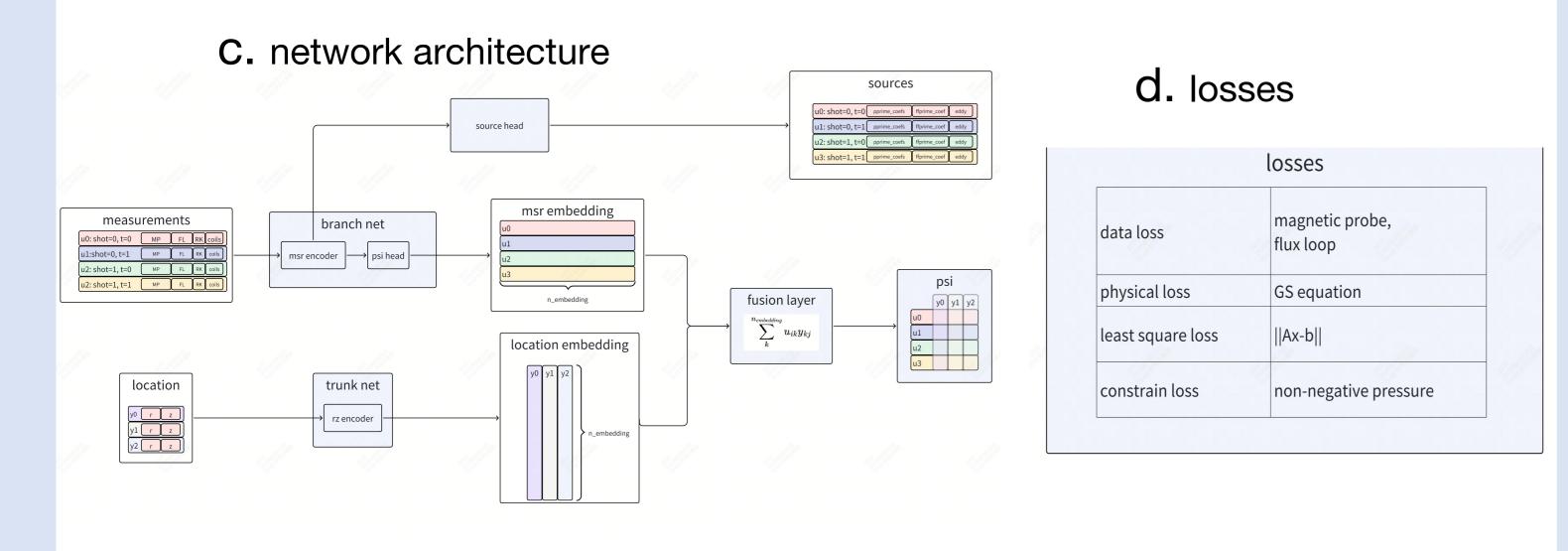
- The dataset contains measured magnetic signals (magnetic probes, flux loops, and Rogowski coils) and PF coil data.
- A key trick is to predict ψ contributed only by the plasma, rather than the combined effect of plasma and coils. The reason is that the ψ landscape becomes much smoother when only the plasma contribution is considered (a. plasma + coils vs. b. plasma only), making it easier for the neural network to learn and fit.





Network Architecture & Losses

- •Our framework (c) builds upon GS-DeepNet^[2] with some modifications. It adopts the **DeepONet paradigm**, with a branch network encoding measurement signals and a trunk network encoding spatial locations, which are fused to predict ψ. The fusion layer is implemented as a **simple Einstein summation**. **A shared encoder layer** (msr encoder in c) is introduced to enhance generalization.
- •We use a polynomial basis for p' and ff', which is the same as the EFIT paradigm. The **source output** predicts the coefficients of p' and ff', as well as the eddy currents of the vacuum vessel.



METHODS

- •The loss function combines multiple components: data loss, physical loss, **least-squares loss**, and constraint loss. The least-squares loss, computed from the source output, replaces the conventional least-squares solving procedure used in EFIT.
- Trainning Strategy

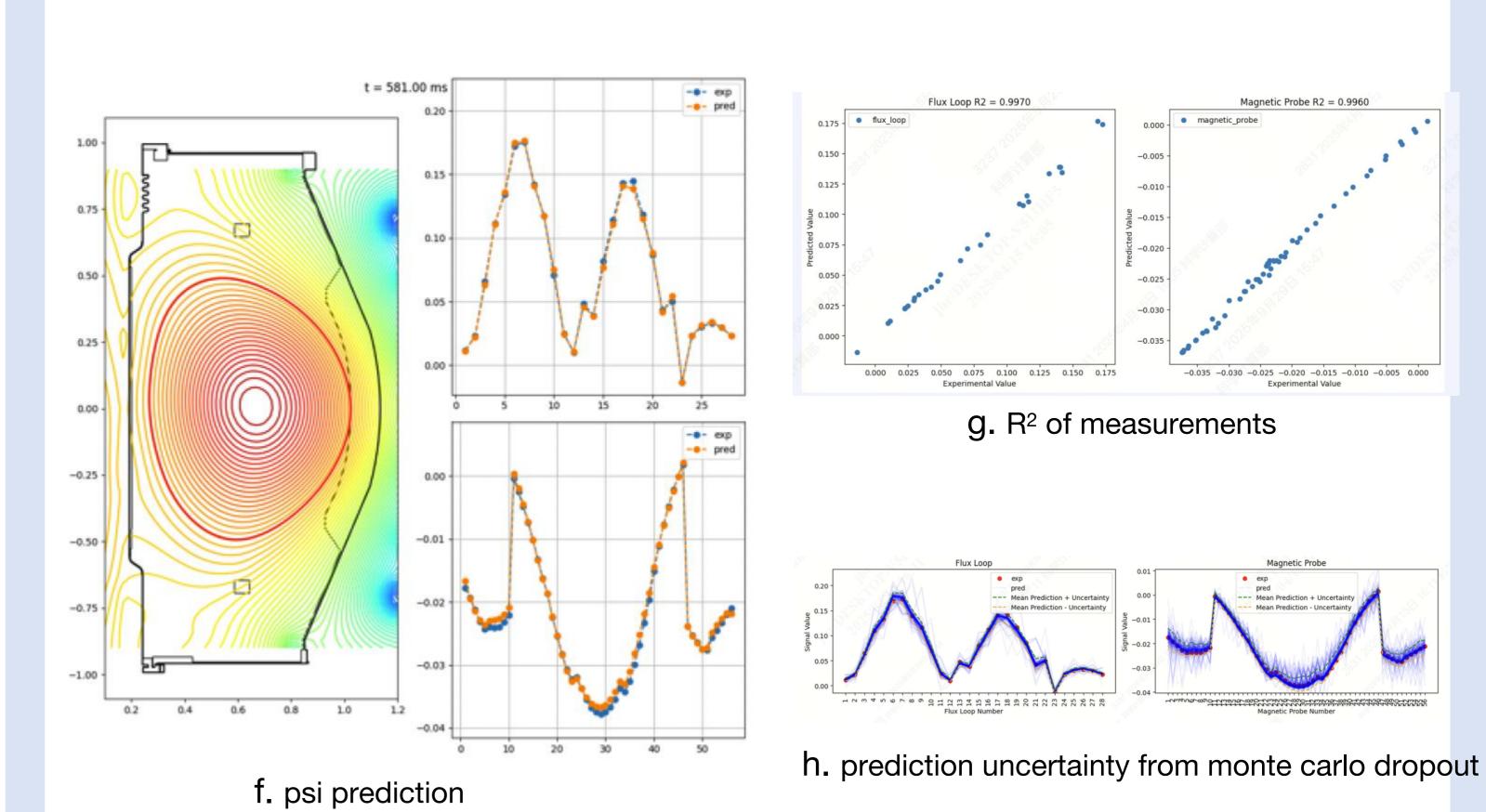
We adopt a stepwise training strategy:

- 1. train ψ -related modules to capture equilibrium representation.
- 2. optimize source-related modules, and freeze the ψ -related modules.
- 3. jointly fine-tune all modules for end-to-end learning. Thes strategy is really important to get a stable training result.

OUTCOME

Trainning Result

- •Our PINN-based framework successfully reconstructs the plasma equilibrium in SUNIST-2 as shown in **f** (left panels). The measurement signals (right panels) exhibit excellent agreement between prediction and measurement.
- Quantitatively, the model achieves $\mathbf{R}^2 = \mathbf{0.9970}$ for flux loops and $\mathbf{R}^2 = \mathbf{0.9960}$ for magnetic probes as show in \mathbf{g} , demonstrating high accuracy and robustness.
- Monte Carlo Dropout is employed to estimate prediction uncertainty, providing reliable error bounds as demonstrated in **h**.



CONCLUSION & OUTLOOK

Conclusion

- Source network improves robustness over least-squares.
- Plasma ψ separation reduces training difficulty.
- Stepwise training accelerates convergence and improves stability.

Outlook

- Temporal modeling for better eddy current prediction and reconstruction continuity.
- · Unified framework for equilibrium evolution and reconstruction.

ACKNOWLEDGEMENTS / REFERENCES

- [1] Lu, L., Jin, P., Pang, G. et al. Nat Mach Intell 3, 218–229 (2021).
- [2] Joung, S., Ghim, Y.C., Kim, J. et al. Sci Rep 13, 15799 (2023).