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• Equilibrium evolution and real-time reconstruction are critical 
challenges in magnetic confinement fusion, especially for the fast-
changing plasmas in SUNIST-2. 

• We present a Deep Operator Neural Network (DeepONet) [1] 
framework that unifies Grad–Shafranov constraints, and diagnostic 
data. 

• Trained on only ~100 discharges, our model achieves real-time 
reconstruction without labels and shows strong generalization. 

• This framework can also be extended to build plasma evolution 
models, enabling data-driven plasma control.

ABSTRACT

• The loss function combines multiple components: data loss, 
physical loss, least-squares loss, and constraint loss. The least-
squares loss, computed from the source output, replaces the 
conventional least-squares solving procedure used in EFIT.

• Trainning Strategy
We adopt a stepwise training strategy:

1.  train ψ-related modules to capture equilibrium representation.
2.  optimize source-related modules, and freeze the ψ-related 

modules.
3.  jointly fine-tune all modules for end-to-end learning.

Thes strategy is really important to get a stable training result.

METHODS

• Real-time control needs real-time equilibrium.
• SUNIST-2 plasmas change fast and violently.
• rt-EFIT limited by speed–accuracy trade-off.
• Surrogate models with neural networks → balance speed & 
accuracy, enable robust real-time reconstruction.

BACKGROUND

Dataset
• The dataset contains measured magnetic signals (magnetic 
probes, flux loops, and Rogowski coils) and PF coil data. 

• A key trick is to predict ψ contributed only by the plasma, rather 
than the combined effect of plasma and coils. The reason is that 
the ψ landscape becomes much smoother when only the plasma 
contribution is considered (a. plasma + coils vs. b. plasma only), 
making it easier for the neural network to learn and fit.

Network Architecture & Losses 
• Our framework (c)  bui lds upon GS-DeepNet [ 2 ]  with some 
modifications. It adopts the DeepONet paradigm, with a branch 
network encoding measurement signals and a trunk network 
encoding spatial locations, which are fused to predict  ψ. The 
fusion layer is implemented as a simple Einstein summation. A 
shared encoder layer (msr encoder in c) is introduced to enhance 
generalization.

• We use a polynomial basis for p’ and ff’, which is the same as the 
EFIT paradigm. The source output predicts the coefficients of p’ 
and ff’, as well as the eddy currents of the vacuum vessel.

 METHODS

Conclusion
•  Source network improves robustness over least-squares.
•  Plasma ψ separation reduces training difficulty.
•  Stepwise training accelerates convergence and improves   
stability.

Outlook
•  Temporal modeling for better eddy current prediction and 
reconstruction continuity.

•  Unified framework for equilibrium evolution and reconstruction.

CONCLUSION & OUTLOOK
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 OUTCOME

Trainning Result
• Our PINN-based framework successfully reconstructs the plasma 
equi l ibr ium in SUNIST-2 as shown in f  ( le f t  panels) .  The 
measurement signals (right panels) exhibit excellent agreement 
between prediction and measurement. 

• Quantitatively, the model achieves R² = 0.9970 for flux loops and 
R² = 0.9960 for magnetic probes as show in g, demonstrating high 
accuracy and robustness. 

• Monte Carlo Dropout is employed to est imate predict ion 
uncertainty, providing reliable error bounds as demonstrated in h.

f. psi prediction

g. R2 of measurements

h. prediction uncertainty from monte carlo dropout


