OF QUASI-AXISYMMETRIC STELLARA

A. SHIMIZU^{1,2}, M. ISOBE^{1,2,3}, S. OKAMURA¹, K. OGAWA^{1,2}, H. TAKAHASHI^{1,2} H. YAMAGUCHI^{1,2}, M. SHOJI^{1,2}, M. OSAKABE^{1,2}, L. YANG², T. MURASE¹, S. NAKAGAWA¹, H. TANOUE¹, Y. XU⁴, H.F. LIU⁴, J. CHENG⁴, X. ZHANG⁴, J. HUAN⁴, X. WANG⁴, J.F. SHEN⁴, H. LAN⁴, C. TANG⁵, and D. Yin⁶.

- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Japan
- ² The Graduate University for Advanced Studies, SOKENDAI, Toki, Japan
- ³ Mahasarakham University, Thailand
- ⁴ Southwest Jiaotong University, Chengdu, China ⁵ Sichuan University, Chengdu, China
- ⁶ Anhui Link Future Technology Co., Ltd., China

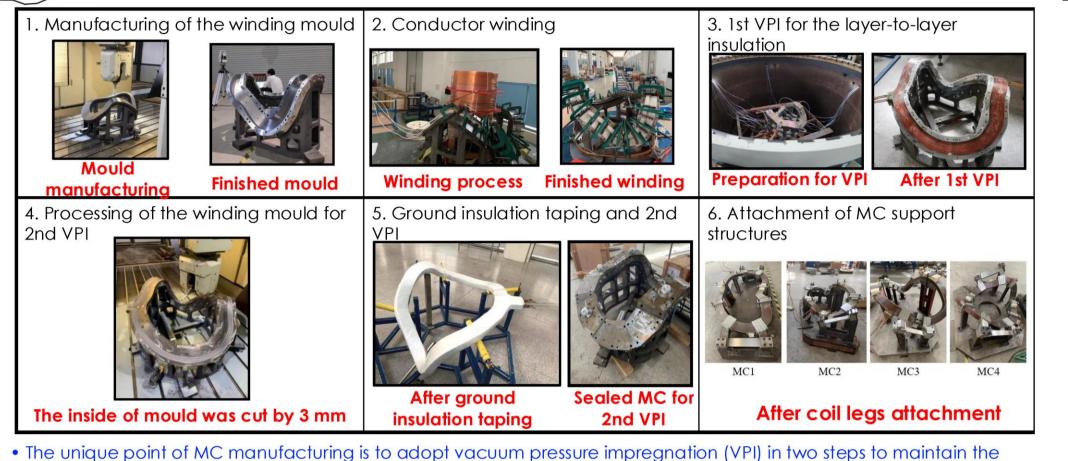
- 1. Overview of CFQS quasi-axisymmetric stellarator
- 2. CFQS engineering
- 3. CFQS construction
- 4. Ability of flexible control of CFQS magnetic field configuration
- 5. Summary

Outline

Establishment of manufacturing method of MCs 🕡 👰 🚉

The 1st stage machine, i.e., CFQS-T for 0.1 T operation is not equipped with coil cases, full

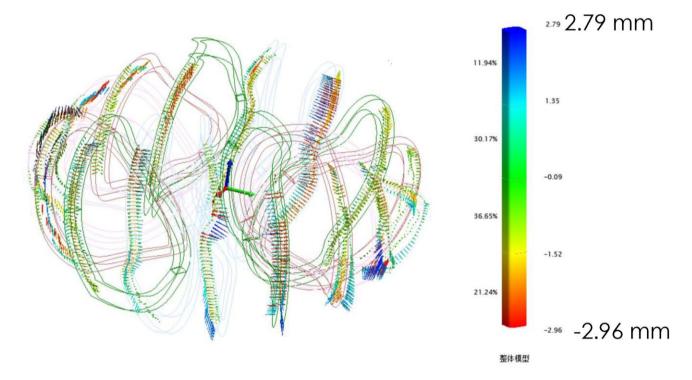
specification of supporting structures, and center pole to withstand electromagnetic force.


Supporting structure design

1st stage: CFQS-T

0.1 T in Jiuli campus

2nd stage: CFQS

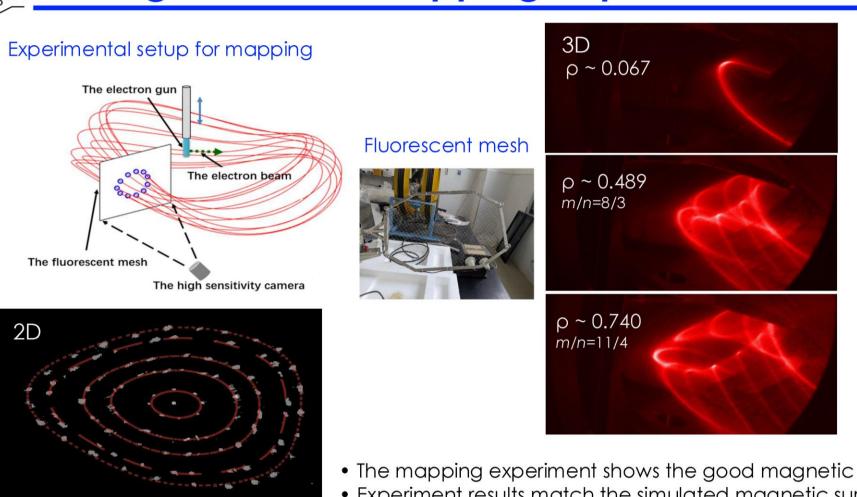

1 T in Tianfu campus

- shape of MC winding packs during ground insulation taping without the winding mould. All MCs have passed final inspections. They have been manufactured with less than 2 mm dimensional deviation

Position error of MCs after assembling process

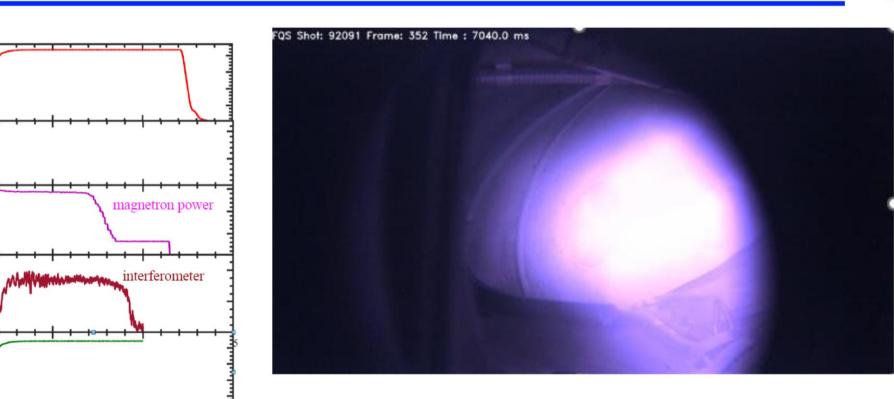
The final deviation of MC assembling is -2.96~2.79 mm.

Experimental setup for mapping


in Hefei to upgrade to CFQS for 1 Toperation.

Magnetic field mapping experiment

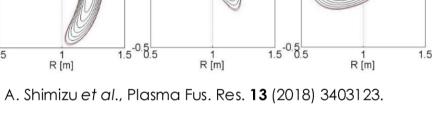
The CFQS-T campaign was ended in May 2025, and transferred to the factory


The first plasma of CFQS-T was achieved in August 31st, 2024.

Overview picture of CFQS-T

• The mapping experiment shows the good magnetic surfaces. • Experiment results match the simulated magnetic surfaces.

A typical plasma discharge in CFQS-T



The CFQS-T plasma is produced by 2.45 GHz magnetron.

• $P_{ECRH} < 5 \text{ kW}$.

Magnetic flux surfaces

Plasma boundary

Overview of the CFQS

The CFQS plasma experiment is divided into two stages: 1st stage of Bt < 0.1 T long pulse operation as "CFQS-T" and 2nd stage of 1 T short pulse operation as "CFQS" after reinforcing the magnetic coil

Quasi-axisymmetric configuration of CFQS

Fourier spectrum of B in the Boozer coordinates

0.4 ρ 0.6

Principal physical properties of CFQS

CFQS

QA

1.0

0.25

0.35~0.38

Magnetic

Parameters

Configuration type

Major radius (m)

3 Minor radius (m)

5 Magnetic field (T)

7 Rotational transform

· QA : Quasi-axisymmetric

• QH: Quasi-helical symmetric

• QI : Quasi-isodynamic

6 Toroidal periods

4 | Aspect ratio

Toroidicity component is dominant

Rotational

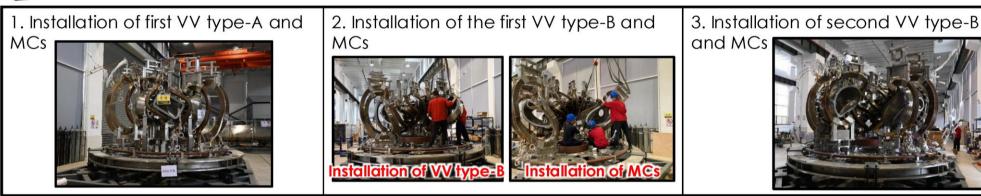
Weak shear profile

W7-X

QI

0.5

0.85~1

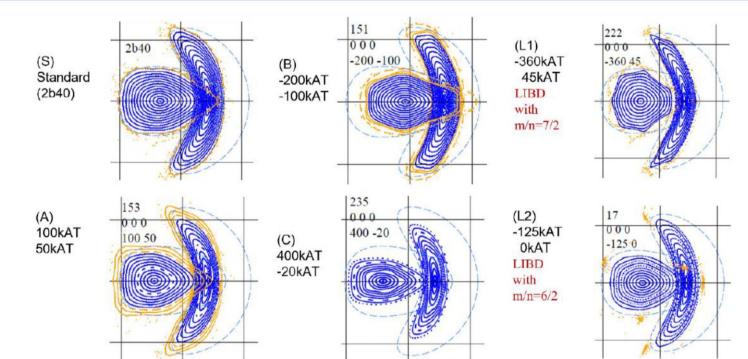

0.15

The CFQS is designed to combine both advantages of a stellarator with steady-state

operation capability and a tokamak with good plasma confinement property.

Assembly procedure of the CFQS-T main body

4. Installation of second VV type-A and main body upport structure

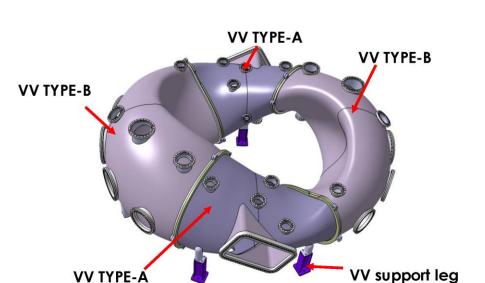


 Maximum position deviation of the MC system including dimensional deviation is achieved to be less than ±3 mm measured by a laser tracker. It will not significantly affect the magnetic field configuration*. *G. Xiong et al., Plasma Phys. Control. Fusion 65 (2023) 035020.

fast ionization gauge

Control capability for magnetic field configuration

- The rotational transform can be controlled with TFCs, the , by which the divertor configuration can be produced with m/n = 2/5 islands structure in the peripheral region.
- Although the QA-ness is slightly deteriorated by this control, effective helical ripple can be kept lower level
- By using PFCs, position of the magnetic axis can be shifted.
- By adjusting the current ratio of IV coil to OV coil, rotational transform also can be controlled.


Components of CFQS-T main body

The CFQS-T main body consists of

(1)16 Modular coils,

(2) 4 sectors of vacuum vessel (VV) with 2 types called VV Type-A, VV Type-B

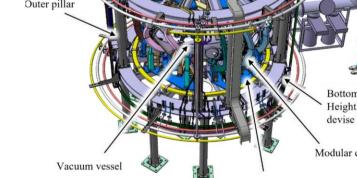
(3) Main body supporting structures.

Vacuum vessel and its sector

Assembled VV sectors

Summary

- The CFQS project is performed in two steps, 1st phase: CFQS-T for 0.1 T operation, 2nd phase: CFQS for 1 T operation.
- Construction of CFQS-T was successfully completed in May 2024, and the first plasma was achieved in Aug. 31st 2024.
- Maximum position deviation of the MC system including dimensional deviation is achieved to be less than ± 3 mm measured by a laser tracker. It will not significantly affect the magnetic field configuration
- Magnetic field mapping experiment was performed. Good magnetic surfaces were obtained as we expected, matching the simulation
- The CFQS for 1 T operation will be started in the end of 2026.



supporting structures.

Intermediate base plate CFQS-T main body for the 1st stage

