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A novel state discovery algorithm has been developed to optimize plasma states in tokamak
scenarios. Optimizing plasma states, i.e., finding optimal configurations based on a specific
functional, is a very challenging task due to the high dimensionality of the problem and the slow
response of the simulator. This could become one of the decisive factors in fusion power plant
scenarios for tokamak optimization. The process is envisioned as an iterative cycle, where the
device is optimized first, followed by the plasma state, and then the device again. By embedding
magnetic and kinetic parameters, along with sensor data, into a latent space using a generative
model, we achieved scalable optimization and reliable state reconstruction. Additionally, the
generative model helps to manage the uncertainty of the simulation process, ensuring safer and
more interpretable operations, as it addresses the inherent lack of interpretability common in
machine learning methods.

The problem of optimizing plasma state parameters is formulated in a probabilistic framework.
The optimization algorithm uses a Gaussian Process (GP) as the surrogate model. However, GPs
perform poorly in high-dimensional spaces. For D3D, the state vector includes E-coil currents,
F-coil currents, ion and electron temperatures at the core and boundary, the pressure gradient
(PPRIME), and toroidal flux function (FFPRIME) vectors (see Fig. 1). This results in a
dimensionality exceeding 100. Another challenge is that the environment is very slow, limiting the
number of plasma states we can sample. To address this, we introduce a second surrogate model

Fig. 1. Integration of Bayesian optimization loop into variational autoencoder-decoder
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based on a generative model – a variational
autoencoder (VAE) – to learn a compact
representation of plasma states. This enables
the algorithm to operate in a much smaller
latent space (with a dimensionality of 8 in our
case) instead of the original input space. The
strength of this model lies in its ability to
compress high-dimensional vectors, identify
patterns in the data, and encode them
implicitly. Visualization of states in latent
spaces is given in Fig. 2.

Another advantage of the generative
model is its ability to generate plasma states
for specific conditions and sample states from
the model. For instance, we know that the
same plasma state can be achieved using
different combinations of coil currents. This model provides a probabilistic distribution, allowing
the generation of feasible plasma states. Additionally, this representation model can be utilized in
control agents as a state reconstructor. Moreover, since the VAE is a neural network, sampling new
data from it is significantly faster than querying the environment. Moreover, the generative model
predicts a distribution of parameters instead of fixed values, providing an estimate of the model’s
uncertainty. This allows us to determine when the model’s predictions should be trusted or avoided,
based on its confidence level. This is crucial for safety, as machine learning methods often lack
interpretability, which can lead to unsafe outcomes if predictions are blindly followed without
understanding their reliability. The pipeline operates as follows:

1. Use an environment capable of modeling a specific tokamak.
2. Initially, random plasma states are sampled from the environment to train the generative model

(VAE).
3. Plasma state optimization begins using the surrogate model (Gaussian Process). This model

describes the relationship between a quality function (e.g., maximum plasma volume, minimum
instability increment, or minimum coil currents) and the vector in the latent space. The GP
provides both the value of the function and the uncertainty of its estimate.

4. The optimization seeks the maximum of this function using an acquisition function that
considers both the value and the variance of the estimate.

5. The Gaussian Process model generates new samples, which are decoded into plasma states by
the VAE and fed back into the environment. The environment solves equilibrium and kinetic
problems and augments the plasma state with additional data, such as plasma shape. This
updated dataset is added to the training set of the generative model, and the process is repeated
iteratively.

We performed ablation studies comparing direct Bayesian optimization with and without the
variational autoencoder. We analyzed the latent representations and provided examples of
conditional generation of plasma states. We also presented the results of plasma state optimization
as a set, which was analyzed from both a control perspective and a tokamak engineering
perspective to demonstrate its applicability in a tokamak optimization pipeline.

Fig. 2. Example of state separation in latent space


