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In this study, we show that a dimensionless instability metric, 𝜈𝜈∗,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
0.4 , significantly improves prediction of 

the L-mode density limit (LDL) and can enable real-time LDL avoidance in experiment. The density limit is a 
major risk and limitation for ITER and future tokamak power plants, as most devices must operate near or above 
the widely utilized Greenwald limit [1] to achieve their fusion power (Pfus~n2) target. This risk is amplified by 
major uncertainties: the Greenwald limit is known to not capture the full complexity of the density limit, and there 
remains no consensus on the casual mechanism of the LDL. By applying machine learning on a multimachine 
database (ASDEX-Upgrade, Alcator C-Mod, DIII-D, and TCV), we identify a new scaling for the precursor to 
the LDL involving the effective collisionality and dimensionless pressure at the edge of the plasma (Fig. 1) and 
show that it achieves 6x fewer false positives than the Greenwald fraction when predicting LDLs. We then 
demonstrate in experiments at DIII-D that this metric can be used for real-time instability avoidance, successfully 
achieving higher densities while robustly avoiding the LDL across repeated experiments. This work demonstrates 
how machine learning can distil more accurate scaling laws from high-dimensional data and enable new control 
solutions operating near instability limits. 

Fig. 1: histograms showing stable 
time steps versus time steps 
belonging to the L-mode density 
limit (LDL) precursor regime in the 
multimachine database. One can 
see that the two distributions have 
more overlap in terms of the 
Greenwald fraction (left) than the 
dimensionless instability metric 
(right). This 

The dimensionless scaling is 
identified from database assembled 

from 150+ density limit events from tokamaks with a diverse set of wall material, plasma size, and field strength: 
AUG, C-Mod, DIII-D, and TCV. Unlike past studies of the density limit, we also include over 3000 non-disruptive 
discharges (primarily from C-Mod and DIII-D due to data availability) to quantitatively determine the false 
positive rate (FPR) and true positive rate (TPR) of various predictors. We then apply several machine learning 
approaches to the task of predicting the precursor to the LDL and compare them to three baselines: the (line-
averaged) Greenwald fraction, the edge Greenwald fraction, and a model based on linear regression. The machine 
learning models we compared were Random Forests (RFs), Neural Networks (NNs), and Linear Support Vector 
Machines (LSVM) trained with recursive feature selection. 

We find that the machine learning models all achieve much greater accuracy than the baselines, with the LSVM 
notably identifying a simple, two-parameter instability metric 𝜈𝜈∗,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

0.4 . As shown in Table 1, this simple 
metric achieves the best “Area Under the Curve” (AUC), a commonly used classification performance metric. 
The instability indicator 𝜈𝜈∗,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

0.4  achieves a FPR of only 2.3% (when calibrated to the 95% TPR needed for 
ITER [2]), which is 6x lower than the Greenwald fraction’s FPR, and similar to the FPR of the less explainable 
RF and NN. 

Table 1: A comparison of data-driven LDL predictors 
(top four) and three baselines (bottom three). For the 
task of L-mode density limit with a true positive rate 
(TPR) of 95% is required, as is the case for ITER [2], 
the two-parameter, dimensionless instability metric 
identified by the LSVM achieves a false positive rate 
(FPR) 6x lower than that of the Greenwald fraction 
for the same test set. 
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The LSVM’s instability metric was implemented in a real-time control scheme at DIII-D (Fig. 2, left) and enabled 
robust avoidance of the LDL in several experiments across multiple run days. The instability metric was computed 
in real-time by the STATIN algorithm in the Plasma Control System and monitored by two controllers: the 
Proximity Controller [3] and the Off-Normal Fault Response (ONFR) [4] algorithm. After the instability metric 
surpassed a user-specified threshold, the Proximity Controller modified the density target in feedback with the 
instability metric and the ONFR increased the NBI power in steps. On each run day, an LDL scenario was 
reproduced to serve as a testbed for the avoidance scheme, such as in shot 199908 (Fig. 2 right). When the 
controller was turned on during the flattop, as in shot 199912, the real-time modifications to the plasma trajectory 
robustly suppressed the LDL precursor. The precursor phase only appeared when the controller response was 
deliberately limited or during rampdown scenarios, and in all cases the controller intervention extended the plasma 
lifetime. In fact, LDL disruptions were entirely avoided in 16 out of 17 discharges. 

Fig 2. The real-time control scheme developed for 
LDL avoidance (left) and comparison of time traces 
for shots with the controller off and on (right). With 
the controller off, shot 199908 ends in an LDL 
disruption slightly before 3s. With the controller on 
during 199912, the plasma survives to the pre-programmed ramp-down. The controller was able to routinely 
suppress the LDL precursor phase and disruptions by lowering the density target and raising the NBI power in 
response to this instability metric. 

In summary, we find that the precursor to the density limit in L-mode is better described as a collisionality limit. 
We identify a more accurate instability metric 𝜈𝜈∗,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

0.4  by training an LSVM classifier with recursive feature 
selection on an extensive multi-machine database. This machine learning workflow, which combines accuracy 
with interpretability, could applied in other fusion contexts to identify analytic stability boundaries from 
experimental data. We then demonstrated robust LDL avoidance on DIII-D via real-time feedback control on this 
instability metric. In addition to improved density limit prediction and control, the LSVM instability metric also 
clarifies the mechanism for the onset of the density limit precursor. While some studies have suggested the root 
cause of the density limit is a radiative collapse in the plasma edge, this instability metric is most consistent with 
theories based on enhanced turbulent transport [5-6]. Additionally, this metric also suggests that burning plasmas 
with naturally low collisionality will have much larger safety margins to the instability than previously thought, 
opening up higher density operation. Finally, the control method demonstrated here could be a model for off-
normal controllers on near-term devices such as ITER and SPARC where disruption consequences will be more 
severe. 
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