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This study introduces an innovative technique for identifying error field (EF) by analyzing
torque balance on a saturated magnetic island. This method facilitates rapid and customized
error field identification under various plasma conditions. Time-resolved EF measurements
using the technique reveal correlations between EF and coil currents from different sources.
Additionally, the use of a rotating n=1 resonant magnetic perturbation (RMP) offers the
advantage of reducing disruption risks by entraining saturated magnetic islands. For ITER-like
devices, EF identification using disruption-free plasmas is necessary to minimize potential
damage to device walls. These findings are instrumental for optimizing EF correction in fusion
devices, thereby enhancing tearing mode suppression and overall plasma stability.

The torque balance model used in this work includes the contribution from electromagnetic
(EM) torque due to wall response, error fields, RMP fields, and viscous torque. The magnetic
island mode and wall response are measured by the 3D magnetic sensors with consideration of
vessel current effects [1][2]. Representing each n=1 field as a phasor (2-D vector) in the
horizontal plane, the torque balance contributions from EF, wall, and RMP are determined by
the cross product of their phasors with that of the magnetic island, accounting for phase
difference and amplitude information. An empirical expression aB% is used to quantify the
general viscous torque, which has been validated in DIII-D experiments [3]. By fitting the
torque balance equation over one or more rotation periods of the RMP, the error field is solved
in terms of equivalent RMP coil currents.
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Fig. 1 (a) Intrinsic EF measurements (circles: L-mode, diamonds: H-mode) obtained through the torque balance
approach under three types of EFC (squares) applied by C-coils on DIII-D, and comparisons with SURFMN
simulation of EF phase on 2/1 (b) and 3/1 (c) modes produced by shaping coil misalignments.
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The intrinsic EF in ITER-like devices is not known a priori, but this technique shows great
robustness in measuring the intrinsic EF amplitude regardless of its amplitude or toroidal phase.
Repeated plasma experiments with different levels of error field compensation (EFC) were
conducted in DIII-D to create distinct residual EFs. These tests included discharges with the
"standard" error field compensation (SEFC) (200012-014) derived from “compass scan”
approach [4], as well as over- (200222-224) and under- (200225-227) compensation. As shown
in Fig. 1(a), the intrinsic error field measurements, calculated by removing the applied EFC
effects from the corresponding measured residual EFs, exhibit consistent results within a
reasonable range near the SEFC.

Phase differences in the measured intrinsic EF were observed across various discharges in
Fig. 1(a), even with identical currents in the ohmic coils, toroidal coils, and plasma itself.
However, shaping coil currents, which respond to plasma control requirements, differed and
potentially modify the EF due to coil misalignments [5]. The SURFMN simulation [6] of EF
contributions from the shaping coil have shown that the 2/1 mode determines the significant
differences between H- and L-modes, and the 3/1 mode presents additional different phase
among L-mode themselves. The torque balance measures the overall EF from n=1 modes and
shows a combined effect of three types of phase range for the intrinsic EFs. The measurements
offered by the technique provide insights into the correlations between EF and coil currents
from various sources, and will enable potential scaling of EF based on coil currents.
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RMP coil currents are reduced, the island locks to the residual error field (EF), but without
leading to disruption. When the RMP currents are increased, the enhanced torque overcomes
the locked equilibrium, enabling the magnetic island to resume rotation.

This technique of torque balance allows for efficient error field identification, offering a
valuable tool for scenario-specific and optimized error field corrections. The method requires
only magnetic diagnostics, and does not rely on plasma rotation measurements, making it
suitable for application during the early commissioning phases of device operations. It also
offers the potential advantage of reducing mode locking and related disruptions by entraining
saturated magnetic islands.
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