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FNOs
Neural Operators learn mappings between functions, not just between fixed grids. They 
can generalize across different discretizations (unlike CNNs or RNNs).

FNOs [2] use the Fourier transform to efficiently capture long-range interactions in 
PDEs. An FNO block consists of:
1. Transform fields into frequency space.
2. Learn how different frequencies evolve (with trainable weights).
3. Transform back to real space for predictions.

Figure 1: Fourier layer in the FNO [2]

EXPERIMENTS AND RESULTS
Baseline Performance
● FNOs reproduce short-term plasma dynamics with high accuracy.
● Long rollouts capture global structures but diverge at blob–boundary interactions.
● Errors spike at a specific point in trajectory events (e.g., wall impact).

FIG. 1. Example rollout for both datasets: (LEFT) electrostatic JOREK dataset, 
and (RIGHT) reduced-MHD JOREK dataset.

FIG. 4. Long-rollout FNO errors for (TOP) electrostatic JOREK and (BOTTOM) 
reduced-MHD JOREK fields: autoregressive rollouts from different start points.

Spatial Error Patterns
● Electrostatic JOREK: errors concentrated near boundaries.
● Reduced-MHD JOREK: errors arise earlier, not boundary-driven.

FIG. 5. This figure illustrates the pointwise model error for the  (LEFT) electrostatic 
JOREK and (RIGHT) reduced-MHD JOREK dataset at specific time steps, 
averaged across the validation dataset. All errors are calculated from the rescaled 
fields.

CONCLUSION & FUTURE WORK
● FNO surrogates can approximate JOREK simulations efficiently.
● Strong in short-term predictions, but long-rollout stability remains a challenge.
● Transfer learning reduces high-fidelity data needs, especially across fidelity levels.
● Transfer to unseen variables is harder, sometimes harmful.
● No explicit physics constraints; MSE loss misses fine-scale structures.
● Future:

○ Attention architectures & physics-informed losses.
○ Active learning, domain adaptation, LoRA.
○ Scaling to higher-dimensional, multiphysics simulations.

MOTIVATION
● Plasma modelling is essential for predicting divertor and core behaviour in future 

fusion devices (e.g., ITER, STEP).
● High-fidelity codes like JOREK are accurate but computationally prohibitive for 

iterative tasks (scenario optimisation, control).
● Neural surrogates can accelerate predictions, but existing CNN surrogates lack 

discretisation invariance.
● Fourier Neural Operators (FNOs) generalise across discretisations and show 

promise for PDE surrogates.
● This work:

○ Evaluates FNOs on JOREK datasets (Electrostatic & Reduced-MHD).
○ Explores transfer learning to improve data efficiency across fidelity levels and 

variables. MODEL TRAINING
● FNO implemented using PDEArena [1].
● Input: sequence of timesteps, Output: next timesteps.
● Training: MSE loss, random trajectory sampling, early stopping.
● Rollouts: autoregressive prediction with error accumulation.
● Transfer learning: pre-train on large/low-fidelity dataset, fine-tune on smaller/high-fidelity dataset.

Figure 2: Model rollout example if input time steps were 4 and output time steps were 1

DATASETS
● 2D slab-geometry JOREK [4] simulations of filamentary blob dynamics.
● Electrostatic JOREK: density, potential, temperature, vorticity.
● Reduced-MHD JOREK: adds magnetic flux & toroidal current.

EXPERIMENTS AND RESULTS (TRANSFER LEARNING)
Idea: Train model weights on abundant, low-cost data -> fine-tune on scarce, expensive high fidelity 
data.

Boosts performance when high-fidelity simulations are limited.

Like learning to ride a bike before learning to ride a motorbike - shared skills transfer, but differences 
can cause problems.

● Cross-fidelity transfer: significant gains for small datasets (order-of-magnitude error reduction at 
short times).

FIG. 8. Scratch and transfer model error at different timesteps and dataset sizes on 
reduced-MHD JOREK (density). Scratch was trained from scratch on the reduced-MHD 
JOREK dataset whilst transfer model was first trained on electrostatic JOREK and then 
finetuned on reduced-MHD JOREK.*

● Cross-variable transfer: partial improvement, but sometimes the transfer model performed worse at 
longer rollouts + larger dataset sizes (risk of negative transfer during long rollouts).

FIG. 9. Scratch and transfer model error at different timesteps and dataset sizes on 
reduced-MHD JOREK (temperature). Scratch model was trained directly on the corresponding 
variables on the dataset. Transfer x2 model was first trained on electrostatic JOREK density 
and electric potential, finetuned on reduced-MHD JOREK density and electric potential (similar 
to prior section) and the transferred to reduced-MHD JOREK temperature and current.*

*The line is the medium error and the error bars correspond to the 16th and 84th percentile.


