NEURAL OPERATOR SURROGATE MODELS OF PLASMA EDGE
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/ MOTIVATION \ 4 DATASETS N\

e Plasma modelling is essential for predicting divertor and core behaviour in future e 2D slab-geometry JOREK [4] simulations of filamentary blob dynamics.
fusion devices (e.g., ITER, STEP). e Electrostatic JOREK: density, potential, temperature, vorticity.
e High-fidelity codes like JOREK are accurate but computationally prohibitive for e Reduced-MHD JOREK: adds magnetic flux & toroidal current.

iterative tasks (scenario optimisation, control).
e Neural surrogates can accelerate predictions, but existing CNN surrogates lack
discretisation invariance.

TABLE |. DATASET SIZES, VARIABLES, AND SPATIAL DIMENSIONS

_ _ _ o Dataset Size Trajectory length Variables Dimensions

e Fourier Neural Operators (FNOs) generalise across discretisations and show Electrostatic JOREK 2000 tra, 200 timesteps 5 T00x100

promise for PDE surrogates. Reduced-MHD JOREK 11391 slices + 20 traj. 10 per slice / 200 per traj 4 100x100
e This work:

o Evaluates FNOs on JOREK datasets (Electrostatic & Reduced-MHD). —

o Explores transfer learning to improve data efficiency across fidelity levels and

\ variables. / / MODEL TRAINING \
e FNO implemented using PDEArena [1].
e Input: sequence of timesteps, Output: next timesteps.
ENO e Training: MSE loss, random trajectory sampling, early stopping.
| S. | _ | e Rollouts: autoregressive prediction with error accumulation.
Neural Operators learn mappings between functions, not just between fixed grids. They e Transfer learning: pre-train on Iarge/low-fidelity dataset, fine-tune on smaller/high-fidelity dataset.
can generalize across different discretizations (unlike CNNs or RNNs). S pp— R —
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3. Transform back to real space for predictions. f !
Figure 2: Model rollout example if input time steps were 4 and output time steps were 1
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Figure 1: Fourier layer in the FNO [2]

Boosts performance when high-fidelity simulations are limited.

Like learning to ride a bike before learning to ride a motorbike - shared skills transfer, but differences
can cause problems.

EXPERIMENTS AND RESULTS

Baseline Performance e Cross-fidelity transfer: significant gains for small datasets (order-of-magnitude error reduction at
e FNOs reproduce short-term plasma dynamics with high accuracy. short times).
e Long rollouts capture global structures but diverge at blob—boundary interactions. g Bollout timestep = 5 Rollowt timestep =125 BallputtiniEstep =50 Rolloutimestep =160

e Errors spike at a specific point in trajectory events (e.g., wall impact).
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FIG. 8. Scratch and transfer model error at different timesteps and dataset sizes on
reduced-MHD JOREK (density). Scratch was trained from scratch on the reduced-MHD
JOREK dataset whilst transfer model was first trained on electrostatic JOREK and then
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FIG. 1. Example rollout for both datasets: (LEFT) electrostatic JOREK dataset,
and (RIGHT) reduced-MHD JOREK dataset. e Cross-variable transfer: partial improvement, but sometimes the transfer model performed worse at
17 variable: temperature (7) N p—— T . lout start longer rollouts + larger dataset sizes (risk of negative transfer during long rollouts).
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FIG. 4. Long-rollout FNO errors for (TOP) electrostatic JOREK and (BOTTOM)
reduced-MHD JOREK fields: autoregressive rollouts from different start points. 3797 7504 11301 3797 7594 11391 3797 7504 11391 3797 7594 11391
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2 oo / i / A R EE TPt e e FIG. 9. Scratch and transfer model error at different timesteps and dataset sizes on
oon [t E e 0O E e //iv/\ S o / i e e °0 reduced-MHD JOREK (temperature). Scratch model was trained directly on the corresponding
omo Ll e EEEET T L et L :\:2\ ol AL e, 19 variables on the dataset. Transfer x2 model was first trained on electrostatic JOREK density
Hajectory_tmestep Haleetony mesten tralestony. imester and electric potential, finetuned on reduced-MHD JOREK density and electric potential (similar
Spatial Error Patterns to prior section) and the transferred to reduced-MHD JOREK temperature and current.*
e Electrostatic JOREK: errors concentrated near boundaries.
e Reduced-MHD JOREK: errors arise earlier, not boundary-driven. *The line is the medium error and the error bars correspond to the 16th and 84th percentile.
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Strong in short-term predictions, but long-rollout stability remains a challenge.
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Transfer learning reduces high-fidelity data needs, especially across fidelity levels.
Transfer to unseen variables is harder, sometimes harmful.

FIG. 5. This figure illustrates the pointwise model error for the (LEFT) electrostatic E&S;(ep_“c't physics constraints; MSE loss misses fine-scale structures.

JOREK and (RIGHT) reduced-MHD JOREK dataset at specific time steps, o Attention architectures & physics-informed losses.
averaged across the validation dataset. All errors are calculated from the rescaled o Active learning, domain adaptation, LoRA.

fields. KO Scaling to higher-dimensional, multiphysics simulations. /
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