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Modelling of plasma dynamics is fundamental to ensure appropriate diverter and core performance, and is
desirable for both interpreting the current generation of experiments and informing the next generation devices
like ITER [1, 2]. Yet the computational expense of many plasma simulations makes them unsuitable for real-time
applications or iterative design workflows. Neural operator surrogate models of JOREK [3] and STORM [4] are
evaluated, investigating their capability to replicate plasma dynamics accurately whilst reducing computational
cost. It is found that the accuracy of the surrogate models will degrade for long term predictions, and that physics
considerations are important in assessing the performance of the surrogates. Surrogates trained on one dataset can
be effectively fine tuned with only a few simulations from a target domain. This is particularly effective where
the source domain is a low fidelity physics model and the target domain is a high fidelity model, with an order of
magnitude improvement in performance for a small dataset and a short rollout.

Si
m

ul
at

io
n

(
)

Su
rro

ga
te

(
)

time=25

Ab
s E

rr
(

)

time=40 time=55 time=85 time=125

2.5e+19

5e+19

7.5e+19

1e+20

1.25e+20

m
3

2.5e+19

5e+19

7.5e+19

1e+20

1.25e+20

m
3

1.5e+19

3e+19

4.5e+19

m
3

Si
m

ul
at

io
n

(
)

Su
rro

ga
te

(
)

time=25

Ab
s E

rr
(

)

time=40 time=55 time=85 time=125 time=170

2e+19

4e+19

6e+19

8e+19

m
3

2e+19

4e+19

6e+19

8e+19

m
3

1.5e+19

3e+19

4.5e+19

m
3

Si
m

ul
at

io
n

(
)

Su
rro

ga
te

(
)

time=205

Ab
s E

rr
(

)

time=220 time=235 time=265 time=305 time=350

5e+24

1e+25

1.5e+25

2e+25

m
3

5e+24

1e+25

1.5e+25

2e+25

m
3

4e+24

8e+24

1.2e+25

m
3

Figure 1: An example trajectory for the density field.
(TOP) electrostatic JOREK, (MIDDLE) reduced-MHD JOREK,
(BOTTOM) STORM

Neural operators: [5, 6] represent a powerful class of
models for learning mappings between function spaces,
making them particularly well-suited for approximating
the solutions of partial differential equations (PDEs).
Unlike traditional neural networks, which are limited
to mappings between finite-dimensional spaces, neural
operators generalize across varying input discretisation,
capturing the continuous functions that govern the data.
This capacity allows neural operators to handle a broad
range of inputs and boundary conditions, making them
ideal for modelling PDE-driven phenomena. For this work,
a type of neural operator called the Fourier Neural Operator
(FNO) was utilized due to its demonstrated efficiency on
medium-scale PDE problems [7].

Datasets: The STORM dataset focuses on modeling
turbulence and transport processes in the scrape off layer,
where a vertical band of density source generates fluid
turbulence in the radial direction. The JOREK datasets
investigate large-scale MHD instabilities from the core and
edge plasma regions [8]. Two JOREK datasets of differing
fidelity were utilized: reduced-MHD JOREK, as typically
implemented in routine studies, and electrostatic JOREK,
which sets the magnetic component in the equations to
zero. Both datasets simulate filamentary blobs in a
simplified 2D rectangular slab geometry with toroidal
curvature, modeling their radial outward motion due to
toroidal curvature and blob pressure gradients. An example
trajectory for all three datasets, along with the surrogate
output, is illustrated in Fig. 1.

Towards replacing simulations with NOs. The NOs
successfully replicated global plasma dynamics, such as

blob and density band location (see fig 1), achieving significant speedups compared to traditional solvers (a full
rollout of the surrogate is approximately 2 minutes on a single core compared to running a full simulation which
takes 14 hours on 48 cores for the JOREK code as an example). Whilst FNOs captured early plasma behaviors
accurately, long time predictions (generated auto regressively by feeding output from prior steps as input) resulted
in the finer details being lost and revealed sensitivity to not just accumulated input errors but also trajectory-
specific physical phenomena. These findings highlight the need for refined neural surrogate architectures capable
of addressing long-term predictive challenges and ensuring stable and accurate simulations for practical fusion
applications.
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Figure 2: Comparison between model trained (orange) from scratch on the higher fidelity JOREK simulations and
(blue) transferred from a lower fidelity JOREK dataset (density field) trained on different dataset sizes. Each column
corresponds to a different rollout timestep, with the rollouts getting longer towards the right.

Leveraging low-
fidelity simulations
to inform high-
fidelity surrogate
models. Data
from high-fidelity
plasma simulations
is scarce and pro-
hibitively expen-
sive to generate.
Transfer learning
allows models to
leverage knowledge
from a source domain to improve learning efficiency and performance in a target domain. Following the success
of transfer learning in computer vision and natural language processing tasks [9, 10, 11, 12, 13], prior work has
demonstrated its potential to improve data efficiency for neural operator surrogates in simulation-based tasks [14].

Transferring knowledge from low- to higher-fidelity JOREK datasets (electrostatic JOREK to reduced-MHD
JOREK) achieved error reductions of up to an order of magnitude in short rollouts and by a factor of 2 in long
rollouts at fixed dataset size (see fig 2). This demonstrates the potential of leveraging low-cost datasets with
transfer learning to improve performance. However, this improvement diminished in long rollouts and occured
much faster when the model was tranferred between datasets with differing physical characteristics (such as
datasets generated from different codes). This emphasises the need for more robust transfer learning strategies
to enhance long-term rollout accuracy.
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Figure 3: Long rollout error for FNO model trained on low-fidelity JOREK dataset
relative to trajectory timestep. Each line is a rollout started at a different point in the
trajectory (using timesteps as input prior to that point) with accumulating input error
caused by the autoregressive rollout.

Sensitivity to Specific Trajectory Lo-
cations: Analysis revealed that long
roll-outs showed distinct error pat-
terns depending on the dataset and
field. Both models trained on JOREK
datasets exhibited error spikes at spe-
cific trajectory points regardless of ac-
cumulated input error (see figure 3).
As each trajectory followed consis-
tent physical behavior (for electrostatic
JOREK this being blobs being initial-
ized at random positions, traveling to

the right, interacting with the boundary, and eventually dissipating), this indicated that these were driven by local-
ized physical events. For example, temperature and density fields experienced sharp error spikes around t = 50
for the electrostatic JOREK model, coinciding with the time period in which the blobs would generally impact
the wall. Point-wise error analysis showed errors concentrated near boundaries, suggesting that these spikes are
related to boundary effects. However, the model trained on the reduced-MHD JOREK dataset showed earlier error
spikes around t = 30, despite the blob-wall impact occurring much later in the trajectory. This divergence suggests
that boundary effects alone cannot fully explain the observed error spikes, as other factors must be contributing to
the dynamics. The exact dynamics behind the observed error spikes remain unclear but these findings highlight
the importance of considering both the physical dynamics of the system and the limitations of the model when
analyzing long-term predictions.
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