DECODING THE CAUSES OF HIGH-DENSITY DISRUPTION THROUGH INTERPRETABLE MACHINE LEARNING

Chengshuo Shen, Mingqiao Wen, Weijie Lin, Li Gao, Wei Zheng, Yonghua Ding and Zhongyong Chen IFPP, HUST, Wuhan, China

ID: IAEA-CN-123/45

shenchengshuo@hust.edu.cn

A Physics-Guided Approach to Disruption Prediction

While machine learning enables accurate disruption prediction, poor interpretability limits physical insight and model transfer. We propose a hierarchical model for density-limit disruptions, replacing Greenwald scaling with physics-guided features. SHAP analysis identifies edge density asymmetry and fluctuations as key drivers.

The limitations of experience-based calibration

- IDP-PGFE, which performs well on J-TEXT, may have internalized the Greenwald scaling.
- However, in RMP experiments, the model focuses too much on core density, missing edge changes.

- Greenwald scaling does not reflect the intrinsic physics of density-limit disruptions. Disruptions may occur before or beyond the limit.
- Can a machine learning model predict disruptions without relying on core density? And can it further distinguish density-limit disruptions from other types?

Physically-guided hierarchical interpretable model

Physics Relation	Feature Name	Physical Meaning	
MARFE	MARFE CIIIAsym (95/82/70) Asymmetry of CIII Radiation		
	HαAsym (95/82/70)	Asymmetry of Hα Radiation	
Danish	DensAsym (95/82/70)	Asymmetry of Line-Integrated Density	
Density Fluctuations	Den_ngrad	Line-Integrated Density Normalized Gradient	
	DenFlu_int (70,60)	Standard Deviation of Density Fluctuations	
	DensFlu_fre (70,60)	Density Fluctuations Frequency	
	DensFlu_amp (70,60)	Density Fluctuations Amplitude	
MHD	MHD_fre	Mirnov Probe Frequency	
	MHD_amp	Mirnov Probe Amplitude	
	MNM	Average Poloidal Mode Number	
	bt	Toroidal Field	
PCS	dx	Plasma Horizontal Displacement	
	dy	Plasma Vertical Displacement	

- Develop a hierarchical classification model Penalty = for disruption prediction
 Hierarchical classification model Penalty = for disruption prediction
- Build a SHAP-based interpreter for the model architecture.

- Avoiding core density as an input feature
- Incorporating physics-guided features such as MARFE, density fluctuations, and MHD activity.

Hierarchy-aware loss function

$$egin{aligned} - & \operatorname{L}_1 \! = \! -rac{1}{N} \sum_{i=1}^N \! \left(y_i^{(1)} \! \log \! \left(\hat{y}_i^{(1)}
ight) \! + \! \left(\operatorname{l} - y_i^{(1)}
ight) \! \log \! \left(\operatorname{l} - \hat{y}_i^{(1)}
ight)
ight) \ & + lpha \cdot \operatorname{Penalty} \end{aligned}$$

 $ext{Penalty} = egin{cases} 1.5\! imes\! ext{L}_{_{\scriptscriptstyle 1}}\!, & ext{if} y_{_{\scriptscriptstyle i}}^{_{\scriptscriptstyle (1)}}\!=\!0\, ext{and}\hat{y}_{_{\scriptscriptstyle i}}^{_{\scriptscriptstyle (1)}}\!>\!0.5 \ ext{L}_{_{\scriptscriptstyle 1}}\!, & ext{otherwise} \end{cases}$

Hierarchical accuracy rate

 $ext{HierarchicalAccuracy} = rac{1}{N} \sum_{i=1}^{N} 1(\hat{y}_i^{(1)} = y_i^{(1)} ext{and} \hat{y}_i^{(2)} = y_i^{(2)}$

		Shot No. of ND	Shot No. of NDLD	Shot No. of DLD
	Training	262	254	253
	Validation	38	36	36
)	Test	75	73	72

ACKNOWLEDGEMENTS / REFERENCES

•The authors would like to acknowledge the help from J-TEXT team. This work was supported by No. 2024YFE03230100, No. 2022YFE03040004, No. 2022EHB003, No. 2024040701010040, No. 12375219 and No. T2422009.

Model results and interpretability analysis

Model results

- One-vs-Rest ROC shows strong and balanced performance on all three classes.
- Confusion matrix indicates high and consistent accuracy across all discharge categories.

Research on interpretability

- Edge MARFE may have limited impact on disruption onset, while stronger density asymmetry increases the likelihood of density-limit disruptions.
- CIII radiation asymmetry mitigates disruption prediction, in contrast to density asymmetry which enhances it—revealing competing roles in the process.

- Stronger density fluctuations and steeper gradients raise disruption risk, reflecting turbulencedriven destabilization.
- Density-limit disruptions are identified by stronger fluctuations or higher gradients.
- Inward-shifted density fluctuations play a key role in triggering density-limit disruptions.

CONCLUSION

- •An interpretable hierarchical model is developed to classify DLD, NDLD, and ND, replacing the Greenwald fraction with physics-guided features.
- •The model achieves strong performance on J-TEXT data, with 96.0% accuracy and a macro-average AUC of 0.94.
- •SHAP analysis reveals that edge density asymmetry and turbulence near 0.6a-0.7a are key drivers of density-limit disruptions, while CIII asymmetry has a stabilizing effect.
- Physics-guided Machine learning offers reliable prediction and insight beyond empirical scaling.