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1. INTRODUCTION 

Disruption is a catastrophic event in tokamak plasmas that requires prediction, mitigation and avoidance [1,2]. Data-

driven disruption prediction has been increasingly investigated and promoted due to its outstanding performance 
[3]. However, most data-driven models are based on machine learning, which leads to a lack of interpretability. 

Post-hoc interpretability methods [4] can effectively demystify black-box models. To date, most interpretable 

disruption prediction approaches show the intrinsic relationships between the plasma state and disruption, or the 

contributions of features that lead to disruption [5,6]. However, their primary objective is to validate the reliability 

of the models, rather than to decode the underlying patterns mined from extensive datasets. Decoding the causes 

of disruptions will helps researchers gain a deeper understanding of disruption physics, develop more suitable 

cross-machine models, and intervene the disruption precursors. High-density operation is crucial for ITER and 

DEMO, but the density limit imposes a fundamental constraint, increasing disruption risks. In this paper, we focus 

on the interpretability study of the high-density disruption. Initially, we built a conventional model to predict all 

types of disruptions. It successfully identified the scaling relationship between plasma current and core density, 

which analogous to Greenwald scaling law. However, experiments on the J-TEXT found that the scaling 

relationship could lead to false alarms. Consequently, we developed a new model that can capture the underlying 

physical mechanisms of high-density disruptions rather than merely the scaling law. 

2. GREENWALD FRACTION BIAS IN DISRUPTION MODELING 

An interpretable disruption predictor based on physics-guided feature extraction (IDP-PGFE) was recently 

developed on the J-TEXT [7]. The model exhibits high predictive performance with high true positive rate (TPR 

= 97.27%) and low false positive rate (FPR = 5.45%). Detailed examination of the roles of central chord averaged 

density and plasma current by SHAP indicates that the model may have effectively captured the Greenwald scaling 

law [8]. However, the Greenwald fraction bias will strongly affect the predicted result. The discharge # 1080500 

was false alarmed because of the high contribution of ne. Actually, the application of 3/1 and 4/1 Resonant 

Magnetic Perturbation (RMP) reduced the contribution of the radiation profile avoid the high-density disruption. 

Therefore, the contribution of the core density could not reflect the real physics of high-density disruption, just 

the empirical relationship. To address this, we propose a new disruption prediction model, which removes 

empirical constraints, integrating impurity radiation and turbulence transport related features for enhanced the 

interpretability of high-density disruption.  

3. HIERARCHICAL MULTI-LABEL DISRUPTION PREDICTION MODEL FOR HIGH-DENSITY 

DISRUPTION 

We trained a hierarchical multi-label classification model based on LightGBM to differentiate density limit 

disruptions, other disruption types, and non-disruptive discharges. The primary objective of this model is to 

identify which features can most effectively distinguish high-density disruption from all the disruption through 

the interpretable disruption prediction model. If the core density is higher than 0.6nG at the disruption time, the 

discharge will be treated as the high-density disruption. To mitigate potential bias induced by the Greenwald 

fraction, we deliberately exclude core density as a model input feature. Instead, we preferred the physics features, 

such as edge transport [9,10],  radiation profile (such as multifaceted asymmetric radiation from the edge, 

MARFE), high-density front [11], and MHD instabilities. The hierarchical multi-label classification model is 

designed to first distinguish between disruption and non-disruption events, and then further categorize disruptions 

into high-density disruptions and other types. To enforce hierarchical consistency, we designed a hierarchical 

cross-entropy loss that penalizes violations of the class structure. This framework produced a parent-class 

disruption prediction model and a subclass high-density disruption model. 
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4. INTERPRETABILITY ANALYSIS WITHOUT GREENWALD FRACTION BIAS 

The strong performance of the hierarchical multi-label classification model indicates that it has successfully 

identified the underlying patterns distinguishing high-density disruption from the other disruption types without 

Greenwald fraction bias. Notably, this model correctly identified shot #1080550 as a non-disruptive discharge. 

This demonstrates that the Greenwald fraction, as an empirical scaling law, can mislead disruption prediction 

models. Therefore, design the disruption models that inherently avoid such biases is necessary. The interpretability 

analysis shows that the parent-class disruption prediction model mainly through MHD instabilities and radiation 

profile related features. In the subclass high-density disruption model, vertical displacement emerged as the most 

critical feature, with lower values correlating with an increased risk of high-density disruption. On J-TEXT, the 

vertical displacement reflects the position of the current centroid, as measured by magnetic diagnostics. The 

contribution of vertical displacement may reflect significant differences in the current density profiles between 

high-density disruption and other disruption types. The impact of vertical displacement in high-density disruption 

and other disruption types has been overlooked in previous experiments.  

5. CONCLUSION 

In this study, we have developed an interpretable framework for disruption prediction to decode causes of high-

density disruption. Our initial investigations using a conventional model found that while the Greenwald scaling 

law effectively captures the empirical relationship between plasma current and core density, its overreliance can 

lead to false alarms. To mitigate Greenwald fraction bias, we developed a hierarchical multi-label classification 

model that excludes the core density input. The interpretability analysis suggests that differences in the current 

density profile, as indicated by vertical displacement measurements, which has been overlooked in previous 

studies.  
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