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1. Mission and basic concept 

VNS is proposed to complement the fusion development 

strategy, which includes today several major experiments 

including ITER [1], which aims at demonstrating burning 

plasma physics, Wendelstein7-X [2], which aims at 

developing fusion-relevant stellarator plasma scenarios,  

DONES [3], which aims at qualifying neutron radiation 

resistant structural materials, and others not mentioned here.  

The main purpose of VNS is the testing and qualification of 

fusion nuclear components [4]. VNS was proposed already in 

1995 to complement ITER [5], [6] but was not implemented 

in the fusion program also because the ITER test blanket 

module (TBM) program was foreseen to enable relevant 

testing of the breeding blanket (BB) [7].  

Achieving D-T fusion generating a high neutron wall load 

(NWL) is less challenging in VNS because a high plasma 

temperature is not required. A feasibility study has been 

concluded recently with the basic design of a tokamak 

machine integrated with the main plant systems including 

provisions for maintenance and able to meet safety & 

licensing requirements [8].  

Informed by the results from the feasibility study, the 

main machine parameters were adjusted to address key issues 

of the VNS, see in Table 1: (i) the increase of the plasma size 

and current allowed a reduction of the aspect ratio and an 

increase of the elongation enabling the plasma to generate a 

fraction of its power through thermal fusion. This improves 

the ratio between external heat and fusion power, Q.  (ii) The 

larger plasma current allows reducing the number of fast 

particles losses from the plasma that cause the erosion of the 

tungsten armour. This also increases the robustness w.r.t. 

known plasma disruptive boundaries, like the  limit.  (iii) 

The larger plasma minor radius reduces the relative distance 

between plasma and control coils, thus improving the 

magnetic equilibrium and controllability. 

VNS aims at reaching an irradiation damage level in the 

first wall of 30-50 dpa. Due to the relatively low fusion 

power, VNS will consume no more than approximately 1 kg 

of tritium, an amount that could be acquired from Canadian 

and South Korean CANDU reactors [9], [10], which supply 

approximately 2 - 3 kg/year, sold at ≈30 M$/kg [11]).  

 

Table 1 VNS main tokamak parameters 

Major / minor radius, R / a 2.67 m / 0.64 m 

Aspect ratio, A 4.25 

Magnetic field (@ 2.67 m radius), B0 5.6 T 

βN [Tm/MA] 2.76% 

Plasma current, Ip 2.5 MA 

Fusion power, Pfus 38 MW 

NWL peak 0.5 MW/m² 

Heating & current drive (H&CD)  

 - Neutral beam (NB) power 

 - Electron cyclotron (EC) power 

42 MW 

8 MW 

Tritium consumption / fpy 2.1 kg 

Target irradiation damage level in the 

first wall 
30-50 dpa 

 

2 VNS design 

2.1 Magnet system 

The VNS magnet system consists of 12 toroidal field (TF), 6 

poloidal field (PF) coils, the central solenoid (CS, see Figure 

1. For thermal insulation of the superconducting coils a 

cryostat provides vaccum condition and the warm VV and 

cryostat surfaces are covered by thermal shields. 

 

Figure 1 Section view of the VNS tokamak before the 

modification of main machine parameters incl. machine 

radial build. Abbreviations: TF coil (TFC), blanket (BLK) 

 

2.2 Vacuum vessel and in-vessel components 

The VV is a double wall structure with two shells, poloidal 

ribs and ports providing access into the main chamber. In-
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wall shielding plates of tungsten, B4C and SS304 are bolted 

in the interspace between the shells. The VV coolant flows 

from the bottom to the top filling the remaining volume 

inside the double-wall structure making the VV an effective 

n-shielding structure. The other main functions of the VV are 

to provide a high vacuum for the plasma and first 

confinement to the radioactive source terms inside the VV. 

The in-vessel components (IVCs) are mounted to the VV 

inner shell. With the exception of the TBMs the IVCs are 

made of 316 Ti stainless steel in order to withstand the 

foreseen end of life neutron fluence without need for 

replacement [14]. The segmentation of the VNS IVCs 

follows the same principles as foreseen for DEMO [15], [16] 

i.e., in each sector the divertor is divided into 3 cassettes and 

the blanket into 5 segments allowing access to their service 

pipes and enabling their remote replacement [17].  

2.3 Neutral beams 

The dependency of VNS on the reliability of its NB injectors 

(NBIs) led to the choice of positive ion beams operated with 

120 keV, a technology with decades of operational 

experience with low downtime from ASDEX-Upgrade 

(AUG) [18] [19]. Although at constant beam power a higher 

beam energy would decrease the number of injected D-

particles into the T-plasma, positively affecting the fusion 

yield in VNS by reducing the D dilution of the T plasma, the 

technical issues and reliability risks associated with negative 

ion sources were considered unacceptable. Each of VNS’s 

NBIs has been designed with four sources and can inject a 

power of 13.5 MW into the VNS plasma [20]. During plasma 

operation, three NBIs are in operation, while the fourth is in 

regeneration mode. In this mode, the torus valve is closed, 

the large cryopanels are heated to release the accumulated 

gas, which is then pumped out from the NBI box [21]. 
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