Modeling of H-mode EAST edge plasma with impurity
seeding by SOLPS-ITER 3.2.0 on wide grid
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Modeling results (continued)

Introduction

» Recently the 2D transport codes were improved to operate on grids extended to the real walls [1, 2,
3]. However, runs with drifts remained a challenging task.
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» First results from SOLPS-ITER 3.2.0 with drifts were achieved on structured meshes only [4], then on 1+
unstructured grids as well [5], but with fluid neutrals and without impurities. 3
» In the paper the new code SOLPS-ITER 3.2.0 is for the first time successfully applied to model the
plasma edge of EAST H-mode discharges with full drifts, impurities and kinetic neutrals, see also [6]. 0.5 2.5
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Figure: Standard mesh for SOLPS-ITER 3.0.8 modeling and two unstructured (us) meshes for
SOLPS-ITER 3.2.0 (without limiter and with toroidally symmetric limiter.)
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Figure: 2D profiles of electron radiation losses.

» 3.0.8 to exp — transport coefficients and BCs on wall are fitted to match experiments;
3.2.0 us2 — fitted transport coefficients on unstructured mesh without limiter;

> . . : .
. Radiatin low th inactive X-poin

» 3.2.0 us lim — same transport coefficients on unstructured mesh with limiter; adiating spot below the top inactive X-point

>

>

This spot is similar to the developed XPR near the active bottom X-point in dedicated experiments.

» In the middle of the spot all energy income by electron and ion parallel heat conductivity is spent to
radiation, ions transfer energy to electrons via collisional exchange. Big flux expansion enhances
temperatue drop at the top.

3.0.8 to us2 — BCs on wall are fitted to match the “3.2.0 us2” profiles;
3.2.0 enh tr — same as “3.2.0 us lim” with enhanced transport to match experiments.
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