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Task Metric Non-FMW FMW
 Train Valid Test Test

DP

Disrupt 
Shots 1984 437 477 212

nonDisrupt 
Shots 4561 980 848 334

ELMs Shots 334 66 81 138
MARFE Shots 55 82 41 69

H/L Shots 132 73 75 133

Table 1: Dataset  Overview

Figure 1: Schematic diagrams of the model structure. 

Model Full HFMTL HFMTL w/o
 Gate Modules

STL w/ 
Task-Specific Signals

Wall Condition Non-FMW FMW Non-FMW FMW Non-FMW FMW
AUC_DP 0.986±0.004 0.965±0.016 0.987±0.004 0.962±0.013 0.985±0.003 0.957±0.010
Median 

Warning Time(s) 0.480±0.068 0.245±0.111 0.435±0.072 0.231±0.072 0.316±0.078 0.191±0.096

AUC_ELM 0.996±0.001 0.973±0.004 0.965±0.005 0.924±0.007 0.995±0.003 0.968±0.005
AUC_MARFE 0.975±0.002 0.935±0.012 0.932±0.004 0.892±0.021 0.973±0.002 0.921±0.009

AUC_H/L 0.999±0.001 0.985±0.006 0.974±0.006 0.941±0.011 0.992±0.001 0.957±0.008
Boldface uses two-sided Welch t-tests (n=20 runs with random seeds, α=0.05). “±” is the standard deviation.
Boldface indicates the best-performing model in each row. If multiple models are statistically indistinguishable from 
the best (p ≥ 0.05), they are also bolded

Table 3: Results of Ablation  
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•We successfully addressed a critical challenge in applying multi-task learning to integrated plasma 
monitoring: preventing the resulting degradation in task performance. Our model significantly 
outperforms conventional MTL and STL baselines and achieves SOTA disruption prediction in EAST.

•The key is our model's gating modules, which employ task-specific gating modules to adaptively 
weigh features from specialized expert networks. This mechanism effectively manages the 
heterogeneous dependencies between tasks and multi-source signals.

•This work  is essential for building the plasma integrated monitoring systems required for 
precursor-aware disruption avoidance in the future.

CONCLUSION

•Proposed a Heterogeneous-Feature Multi-Task Learning (HFMTL) framework,   for 
four integrated plasma-monitoring tasks: disruption prediction (DP), ELM detection, 
MARFE detection, and H/L-mode identification.

•HFMTL outperforms conventional multi-task and single-task learning baselines on 
EAST, yielding longer DP median warning time(0.480 s) and higher AUCs for H/L and 
MARFE, with comparable or superior performance for ELM detection. It also 
demonstrates better zero-shot cross-wall performance.

•HFMTL validates that correctly modeling the heterogeneous dependencies 
between different tasks and multi-source input signals is the key to successful 
multi-task learning in this domain; HFMTL thus advances integrated plasma 
monitoring and is promising for facilitating precursor-specific disruption avoidance.

ABSTRACT

•Motivation: Disruption avoidance requires not only predicting impending 
disruptions but also identifying their specific precursor instabilities to enable 
targeted control. Multi-task learning (MTL) naturally integrates these tasks, 
improving accuracy while reducing deployment cost.

•Challenge: Different tasks exhibit heterogeneous salient features (they rely on 
different key signals). Conventional MTL with enforced sharing induces cross-task 
interference, degrading performance and sometimes underperforming single-task 
learning (STL); this remains a central unresolved issue.

BACKGROUND & CHALLENGES

Dataset
•Approximately 10,000 historical EAST 

discharges spanning pre-upgrade non-full-
metal-wall(non-FMW) and post-upgrade 
full-metal-wall (FMW)  configurations are 
used.

•The non-FMW data are partitioned into 
training, validation, and test sets, with all 
FMW data used exclusively as a test set 
(Table 1). 

METHODS

OUTCOME
•Tab.3: The full HFMTL model achieves the longest median warning time (0.480 s) and the highest 

or joint-highest AUCs for the ELM detection, MARFE detection, and H/L identification tasks. 
Ablation proves the gates are essential. Removing them causes a sharp performance drop (e.g., 
H/L AUC: 0.999 → 0.974), confirming they prevent negative signal interference between tasks.

•Fig. 2 shows two examples: task predictions match observations, enabling ELM-free H-mode 
identification by combining tasks.

•Fig. 3: Gating weights over 16 signal groups. Near-zero inits stay tiny; others adapt. ELM task 
relies on Dα and PXUVedge; while the H/L task additionally depends on Wmhd. MARFE on PXUVmain; 
DP on aminor and PXUVmain— consistent with physical intuition.

Figure 2. Model Working Examples

Figure 3. Gating Weights 

Model Architecture
•Structure: Consists of expert modules, gating 

modules, and task heads (Fig. 1). 
• I/O: Processes sliding-window inputs(45 

signals ×100 time steps) to predict labels for 
four tasks.

•Mechanism: The 45 signals are split into 16 
expert-processed groups (Table 2). For each 
task, a dedicated gating module adaptively 
weights expert outputs, filtering irrelevant 
signals before final prediction.

• Initialization:  Gate weights over the 16 
experts can be init ial ized from physics-
informed priors (Table 2) and refined during 
training.

Ablation Test Setup
•An ablation study validates effectiveness by 

comparing three configurations: (1) the full 
HFMTL; (2) HFMTL without the gating module 
and (3) STL with task-specific inputs from 
Table 2.

•Models are trained exclusively on non-FMW 
data and evaluated on held-out non-FMW and 
FMW datasets to assess performance and 
cross-wall generalization (Table 1).

•All multi-task models are kept with identical 
parameter counts. For single-task models, the 
p a ra m ete r  co u nt  m atc h e s  t h at  o f  t h e 
corresponding task-specific branch in the 
multi-task model. All hyperparameters are 
tuned to optimal settings.

Table 2: Signal Groups per Task
main

main

main

main

# Signal Group DP ELM MARFE H/L
1 Zerror ✓

2 Iic ✓

3 Ip,error norm ✓

4 kappa ✓

5 q95 ✓

6 Li ✓

7 Dα ᵃ ✓ ✓ ✓

8 PXUVedge ᵇ ✓ ✓ ✓

9 fGW ✓ ✓ ✓ ✓

10 Wmhd ✓ ✓ ✓ ✓

11 Ip ✓ ✓ ✓

12 aminor ✓ ✓ ✓

13 Vloop ✓ ✓ ✓

14 Bcenter ✓ ✓ ✓

15 PXUVmainᶜ ✓ ✓

16 POWERs ᵈ ✓ ✓

aDα channels: L1,L2,U2,U3; 
PXUV is fast bolometer at the P-port; 
bPXUVedge channels: 2,6,56,58;
cPXUVmain channels:9,11,13,17,19,22,24,26,
                29,32,34,36,39,42,44,46,48,52,54; 
dPOWERs: PRAD,PNBI,PLH,PICRF,POHM,PECRH


