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Disruption prediction (DP) is crucial for tokamaks’ safe operation, and detecting
instability phenomena as disruption precursors is key to avoiding disruptions [1-2].
Many studies used the Single-Task Learning (STL) framework to model individual
phenomena separately [3-5]. Now Multi-Task Learning (MTL) framework shows
great potential for performance improvement and deployment costs reduction. On the
C-Mod, DIII-D and EAST databases, Zhu et al.'s MTL-based model that integrates
DP with the identification of several precursors, achieving better DP performance[6].

This study proposes a new heterogeneous-feature multi-task learning (HFMTL)
framework for simultancous DP, Edge-Localized Mode (ELM) detection,
Multifaceted Asymmetric Radiation From the Edge (MARFE) detection, and Tearing
Mode (TM) detection. It effectively addresses the performance degradation
encountered by traditional MTL when significant heterogeneity exists in the feature
spaces of different tasks. As shown in Fig. 1, Our framework employs a specially
designed gated mixture-of-experts neural network, enabling each task-specific branch
to select highly relevant input features through learnable gating mechanisms while
suppressing interference from less relevant signals. Additionally, physics-inspired
prior knowledge is embedded into the design of the loss function, further enhancing
the predictive performance.

The framework is exclusively trained on the non-full-metal-wall (non-FMW) data
of the Experimental Advanced Superconducting Tokamak (EAST), but tested on both
unseen non-FMW data and unseen full-metal-wall data (FMW). Results show that on
the non-FMW test set, the HFMTL outperforms both STL and conventional MTL
methods lacking feature-gating mechanisms across all tasks. On the FMW test set,
HFMTL outperforms conventional MTL in all tasks, and outperforms STL in some
tasks. Notably, HFMTL achieves state-of-the-art (SOTA) performance for DP tasks
on the EAST (as shown in Fig. 2a - Fig. 2b) with higher AUC and earlier warnings
than prior literature, while showing promising ELM and MARFE detection
capabilities (as shown in Fig. 2c -Fig. 2d).

This study supports future targeted disruption avoidance strategies, provides new
insights for comprehensive plasma state monitoring, and offers a reference for
addressing other heterogeneous feature multi-task learning challenges.
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Figure 1. Architecture of gated mixture-of-experts neural network.
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Figure 2. Performance of the HFMTL on DP, ELM dection and MARFE detection.
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