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INTRODUCTION DIAGNOSTICS

h the surface of the facing components

will have a significant impact on the fusion plasma parameters and will

also determine the lifetime of the first wall and diverters/limiters.

e The recent replacement of beryllium by tungsten for the ITER first wall

raises anew a number of issues re

lated to plasma-surface interactions, in

particular, plasma contamination by high-Z impurities.
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BACKGROUND

e One possible solution to this problem is to coat the tungsten with a layer

of a low-Z refractory material or even replace tungsten with more optimal

material, such as high-temperature ceramics.

e Experimental studies of ceramic materials promising for coating plasma-

facing components (PFC) should first of all include the study of hydrogen

isotope retention, as well as erosion processes under transient heat loads.

FACILITIES AT BUDKER INP

e Several experimental facilities

Institute of Nuclear Physics to stuc

have been developed at the Budker
vy materials for fusion PFC.

e To study the effects of fusion-re

glass are used.

—— flashlamp pumping power

—— laser power

evant thermal exposure on materials,

oowerful electron beam, continuous infrared fiber laser for pulsed-
oeriodic material impact experiments and pulsed laser on neodymium

e The experimental complex setups allow simulating transient heat loads
(heat fluxes up to 10 GW/m?2, durations 0.1 — 1 ms).
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LASER HEATING

The use of laser heating enables the study of dielectric samples, as well as

samples placed in a magnetic field,

regardless of its strength and direction.

e Wavelength 1.06 um; Pulse energy up to 200 J;
e Pulse duration 500 - 800 us; Irradiated area 0.1 — 10 cm?;

e The facilities are equipped with optical in situ diagnostics that allow

monitoring of samples surface temperature and studying erosion

processes directly during impact.
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Schematic of the setup featuring the
1.06 um heating laser path, IR
power detector, thermal radiation
diagnostic system, and 532 nm
scattering-based erosion monitor
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RESULTS

e The damage thresholds for a series of ceramics under transient heat loads

have been determined.

eCraters formation resulting from material spallation are clearly visible.
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The dependence of the signal
recorded by a laser scattering
diagnostic. The red dot indicates the
temperature corresponding to the
onset of spallation.
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The heat flux factors corresponding
to the erosion beginning on the
surfaces of boron carbide (B,C),
silicon carbide (SiC) and zirconium
diboride (ZrB,).

CONCLUSION AND PROSPECTS

e Plans for a further experimental campaign include exploring new ceramic

materials, specifically diborides such as titanium diboride, as potential

replacements for carbides. Carbon-free materials appear more promising

due to their expected lower hydrogen retention rate.

e The nearest plans include testing samples using a stationary plasma

source based on helicon discharge in magnetic field and periodic pulse

electron beam.

e New sources of exposure will make it possible to study the hydrogen

retention problem and phenomena associated with thermal fatigue of

materials (up to 107 pulses and more).



