

Deuterium interaction with low-activated chromium-manganese austenitic steel with increased content of carbide particles

ID: 2931

Golubeva¹ A.V., Shishkova¹ T.A., Stepanov¹ N.O., Aleshin^{1,2} A.E, Kozlov¹ D.A., Persianova¹ A.P., Cherkez¹ D.I., Litovcheko³ I.Yu. Chernov⁴ V.M.

Golubeva av@nrcki.ru

¹ NRC «Kurchatov institute». Moscow. Russian Federation ²NRNU MEPHI, Moscow, Russian Federation

³ ISPMS SB RAS, Tomsk, Russian Federation ⁴VNIINM, Moscow, Russian Federation

ABSTRACT

New low-activation austenitic chromium-manganese steel has been recently developed in Russia as a potential structural material for nuclear and fusion reactors. In the present work deuterium interaction with melt No 4 of new steel with increased content of carbide particles was investigated. Deuterium was introduced into steel samples by exposure to D₂ gas at a temperature of 200 °C and a pressure of 5·10⁵ Pa and by 100 eV deuterium plasma irradiation at 200 °C with fluence of up to 1025 D/m2. Deuterium retention in the new steel was investigated using thermal desorption method. Deuterium permeation into the new steel was studied in a temperature range of 150-380 °C and a deuterium pressure range of 103-5·104 Pa. The temperature dependences of deuterium diffusivity and permeability of the new steel were obtained

1. Low activation austenitic steel (LAAS)

Austenitic Ni steels

Advantages: corrosion and heat resistance, not magnetic, resistive to radiation and He embrittlement, low DBBT Disadvantages: high activation, long decline of induced activity

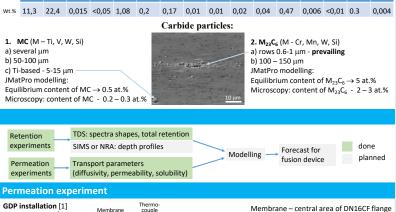
Reduced activation ferritic-martencitic steels (RAFMS)

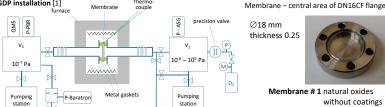
Advantages: low activation, low swelling up to ≥ 100 dpa, heat resistance, radiation resistance, compatible with Li Disadvantages: magnetic, DBTT ↑ under n-irradiation

Alternative: low activation austenitic Cr-Mn steels (LAAS) Advantages: low activation, not magnetic

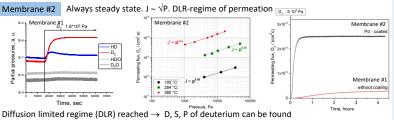
Disadvantages: LAASes developed in last 25 years of 20th century. Stopped because of phase instability

A new reduced activation Cr-Mn austenitic steel has been developed


- Stability of diamagnetic properties under long-time aging
- Dispersion-strengthened High stability of austenite

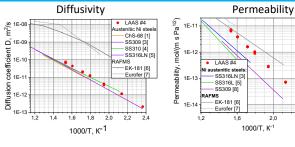

Hydrogen isotopes interaction with low-activation chromium-manganese steels:

- has never been investigated
- a security issue if using in fusion


Goal of work: investigation of deuterium interaction with new low activation Cr-Mn austenitic steel (LAAS) with increased content of carbide particles

2. Object of research: LAAS melt No 4

on both sides Membrane #1 No steady state. Permeating flux decreases after maximum → surfaces change

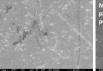

Calibrated aperture

S – solubility P = DS - pern $J_{DLR} = \frac{DS\sqrt{p}}{L} (1 + 2\sum_{n=1}^{\infty} (-1)^n \exp(-\frac{D\pi^2 n^2}{L^2})$

Natural oxides decrease permeating flux p – pressure above inlet surface **by factor of 10** L – membrane thickness

Membrane # 2 oxides sputtered:

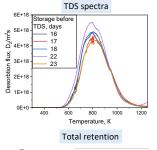
DEUTERIUM DIFFUSIVITY AND PERMEABILITY

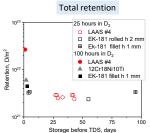

 $D(T) [m^2/s] = 3.2 \cdot 10^{-6} e^{-58000/RT}$

 $P(T) [mol/(m\cdot s\cdot Pa^{1/2})] = 6.9\cdot 10^{-6} e^{-62600/RT}$

The deuterium diffusivity in LAAS is close to that in nickel steels of 300th class. The deuterium permeability in LAAS is several times higher than in usual nickel austenitic steels

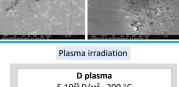
Samples for retention experiments

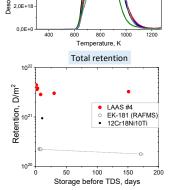

- Electric discharge sawing Double-side mechanical polishing to a
- mirror-like finish
- Cleaning in acetone
- Annealing in vacuum 773 K, 2 hours



Exposure in D₂ 5·10⁵ Pa, 200 °C, 25 or 100 hours storage at air

Saturation with D in gas


Retention study: TDS, 0.5 K/s


25 hours exposure in D₂: LAAS and RAFMS Ek-181 retain the same amount 100 hours exposure in D2:

Retention in LAAS is 3.5 times higher than in Ni SS Retention in LAAS is 6 times higher than in RAFM

 $5 \cdot 10^{25} \, D/m^2$, 200 °C Storage in a high vacuum Retention study: TDS, 0.5 K/s

TDS spectra

Deuterium retention in LAAS#4 An order of magnitude higher than in > RAFMS 2-3 times higher than in Ni austenitic steel

Possible reason for high retention in LAAS - high content of carbide particles

CONCLUSION

The deuterium interaction with low-activation chromium-manganese austenitic steel was investigated.

- · The temperature dependencies of diffusivity and permeability of the new steel were obtained in a temperature range of 150 - 380 °C. The deuterium diffusivity in LAAS is close to that in nickel steels of 300th class. The deuterium permeability in LAAS is several times higher than in usual nickel austenitic steels.
- At 350 °C natural oxides on the surfaces of 0,25 mm thick LAAS membrane reduce permeating deuterium flux by an order of magnitude.
- Deuterium retention in LAAS after exposure in D_2 gas (200 °C, of $5\cdot10^5$ Pa, 25 h) and after D-plasma irradiation (200 °C, 1025 D/m2) was investigates. LAAS #4 retains higher amount of D than Ni austenitic and than RAFM steel.

ACKNOWLEDGEMENTS

This work was performed under the State Contract of NRC "Kurchatov institute"