
TH-D 

Generalizing  Shadow Mask Predictions for SPARC Plasma-Facing Components Using 
Machine Learning 
1D. Corona,  1M. Churchill,  1M.Scotto d’Abusco,  3A. Wingen , 1S. Munaretto, 1A. Kleiner 2T. Looby. 
 
 
1 Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA. 
 
2 Commonwealth Fusion Systems, Devens, Massachusetts , USA. 
 
3 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 
 
 
Email: lcoronar@pppl.gov 
 

Plasma-facing components (PFCs) play a vital role in ensuring the stability and safety of tokamak operations. In 
the SPARC tokamak, understanding and predicting heat load distributions on these components is critical due to 
their complex 3-D geometries and the extreme operational conditions [1]. Shadow masks, regions of PFCs 
shielded from heat flux due to geometric effects, are particularly important to model accurately, as errors in 
predictions can lead to component failures, including melting, or compromised operational performance. The 
HEAT code (Heat flux Engineering Analysis Toolkit) has been instrumental in enabling precise 3-D heat flux 
analyses, but its computational intensity limits its applicability in scenarios requiring rapid or real-time 
predictions [2]. 

To address these challenges,  was integrated machine learning (ML) techniques with HEAT to develop surrogate 
models for fast and accurate shadow mask predictions. Using a feedforward neural network (FNN), trained on a 
diverse database of SPARC equilibriums encompassing variations in plasma current, safety factor and incident 
magnetic field angles, it successfully replicated HEAT’s predictions for specific PFC geometries [3]. This 
approach achieved a substantial reduction in computation time, down to the millisecond range, enabling 
feasibility for between-shot analysis and fast design iterations. The FNN-based model exhibited strong 
predictive accuracy across the training set and validation cases, demonstrating the capability of ML-enhanced 
methods to complement computationally intensive physics-based models. 

 

Figure 1.  Combined view of the shadow mask prediction and a zoomed-in detail for  a certain equilibrium. The blue arrows 
in the bottom image indicate the small regions where the prediction algorithm made incorrect predictions. 

 
 



[Right hand page running head is the paper number in Times New Roman 8 point bold capitals, centred] 
  

 

 
Figure 2. Comparison of the heat flux prediction using the regular and ML versions of the Shadow Mask calculation in the 
HEAT code for a given equilibrium. R2 = 0.9992 and RMSE = 0.45 MW/m2 

 

The implementation of these FNN-based surrogate models with HEAT also facilitated a deeper understanding of 
the intricate interplay between 3-D PFC geometry and plasma parameters. The incorporation of diverse training 
data ensured robustness to typical operational conditions. This step forward not only enhances the ability to 
predict shadow masks but also could optimize the iterative process of PFC design and testing. While the 
FNN-based surrogate model represents a significant step forward, its applicability remains limited to the specific 
PFC elements and geometries included in the training database. To address this limitation, we focus on 
generalizing the surrogate model to extend its applicability across a broader set of PFC configurations. This 
generalization effort involves leveraging advanced ML architectures, particularly graph-based, which are 
well-suited for capturing spatial and topological relationships inherent in 3-D geometries [4]. By transitioning to 
a generalized model, this work aims to advance the state of surrogate modeling for tokamak divertor heat flux 
analysis. The final goal is to make use of the fast prediction of shadow masks for operational porpoises , where 
they can be used during or in between  plasma discharges.  
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