J-TEXT's Efforts on Disruption Prediction of Future Rectors

Wei Zheng, Xinkun Ai, Fengming Xue, Zhong Yu, Chengshuo Shen, Dalong Chen, Bihao Guo, Nengchao Wang, Ming Zhang, Yonghua Ding, Zhongyong Chen, Biao Shen, Bingjia Xiao

Introduction

Background

Accurate disruption prediction is one of the keys for tokamaks to be commercially viable reactors. But these are some chanlleges for future tokamak disruption prediction.

- ☐ During the initial operation of the new device, the data is scarce, so it is difficult for model training and hyperparameter selection.
- ☐ Due to differences in structure, operating parameters, and other factors, the data driven models are difficult to transfer between tokamaks.
- ☐ Machine learning models struggle with cross-machine generalization and scenario adaptation.

Work

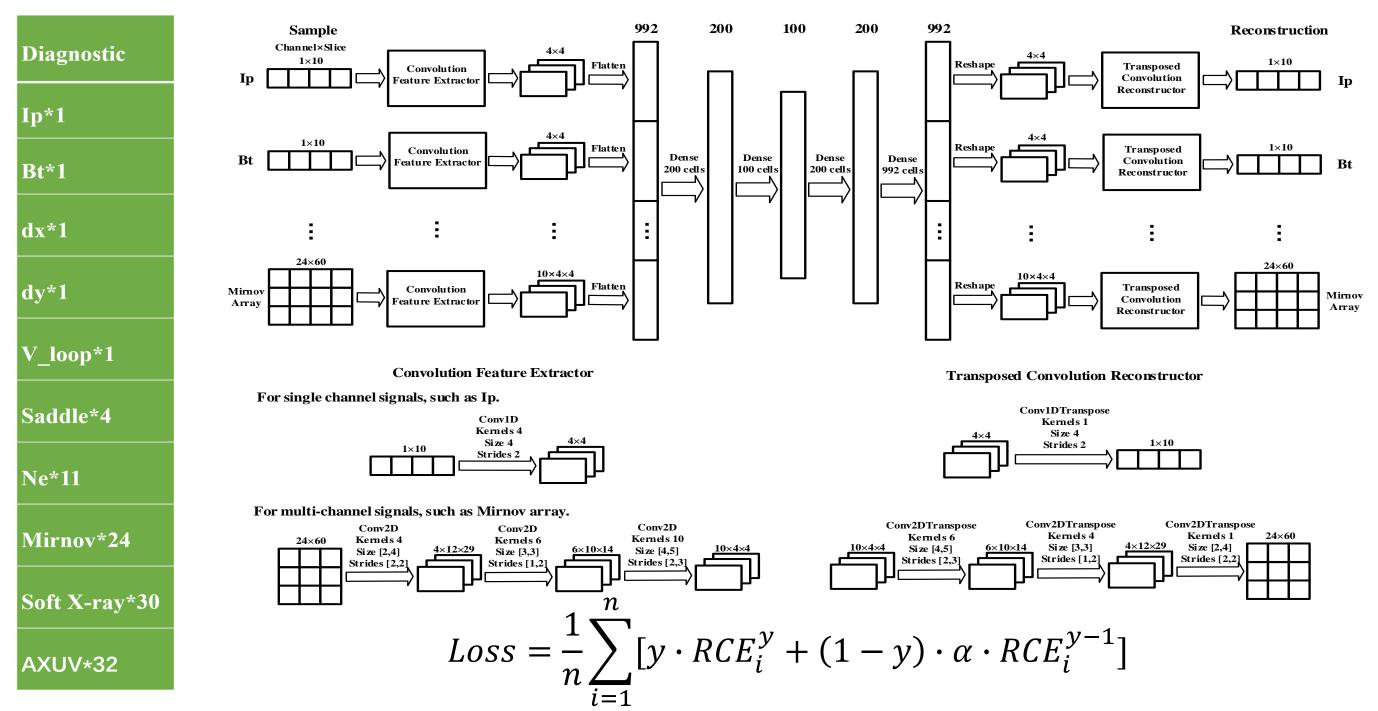
We propose a phased strategy for different operational phases:

- > Anomaly detection from the first shot.
- > Physics-guided transfer learning with limited data.
- > Disruption Budget Consumption (DBC) for risk-aware evaluation

Anomaly Detection & Cross-Tokamak Transfer

☐ Developed E-CAAD anomaly detection model

> Trained on non-disruptive samples, uses disruptive precursors when available.



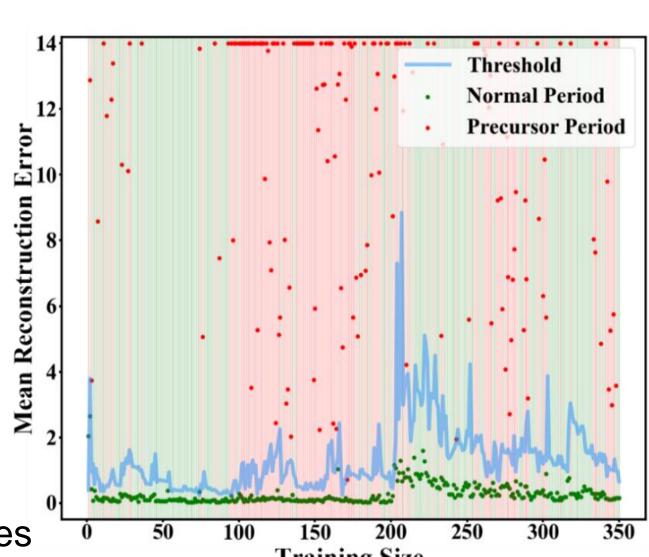
☐ Trained on J-TEXT, deployed on EAST from first discharge.

☐ Strategies:

- > Existing-machine data assistance.
- Adaptive learning from scratch.
- > Adaptive alarm threshold adjustment.

□ Result

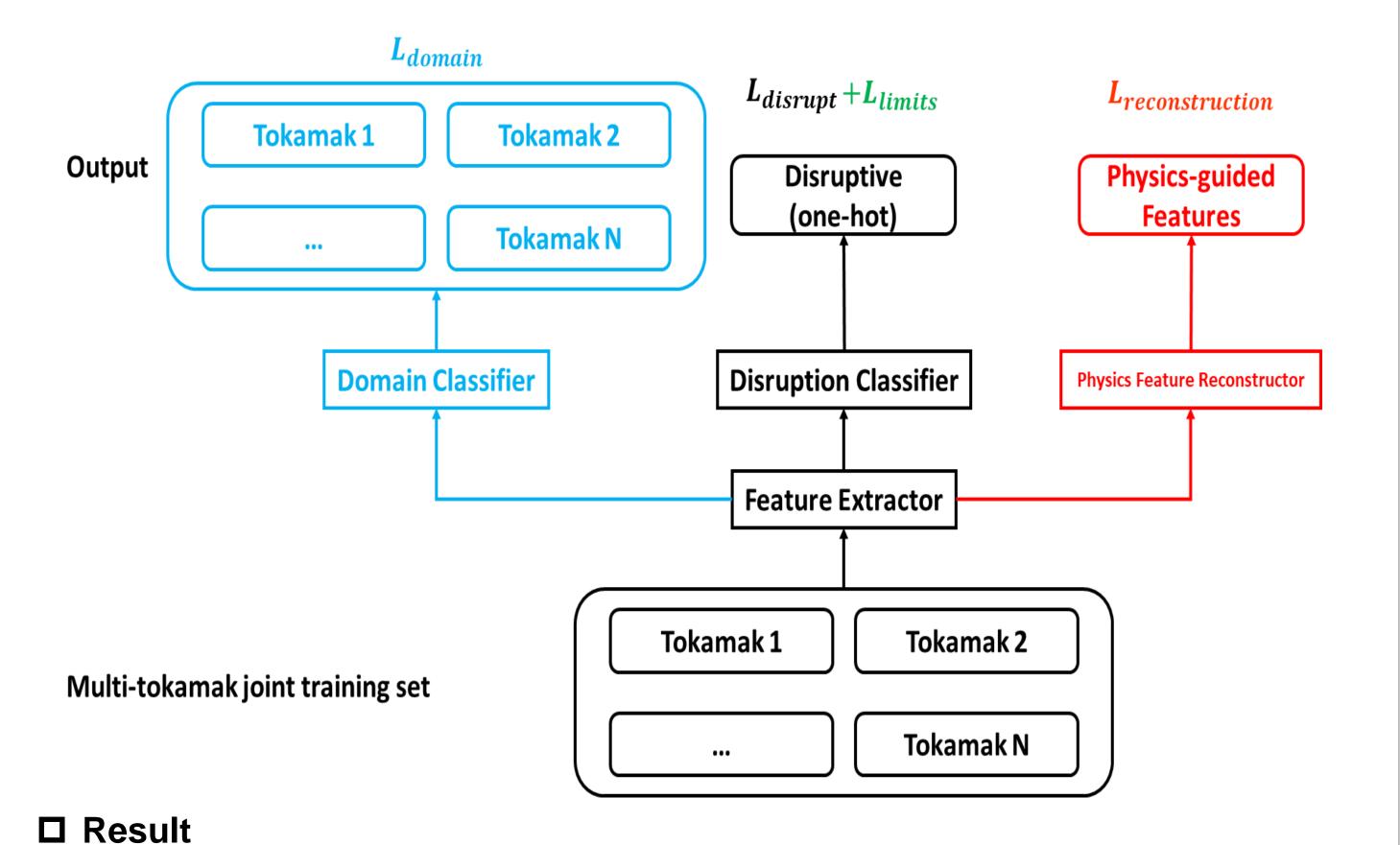
- > Disruption prediction from the first discharge.
- Model automatically adapts to dynamic changes in operation scenarios



Physics-Guided Transfer Learning

☐ Physics-guided Domain Adaptation Network (PhyDANet)

- > Combines physics constraints (e.g., density, q-limits) with ML.
- > Uses domain adaptation (DANN, MMD) + reconstruction.



	Data	+ Physical Loss	+Reconstruction	No physics guidance
Only EAST	2 shots	0.8357	0.8039	0.7992
	20 shots	0.8902	0.9053	0.8756
J-TEXT+EAST Domain Generalization	J-TEXT 1021 shots EAST 2 shots	0.8026	0.7762	0.8094
	J-TEXT 1021 shots EAST 20 shots	0.9449	0.9475	0.9212

- > 2 EAST shots: Physical loss boosts performance.
- > 20 EAST shots: Domain adaptation + reconstruction → TPR > 94%.

Disruption Budget Consumption (DBC) Framework

□ Purpose

Quantifies impact of disruptions in different operational phases of a tokamak plasma discharge

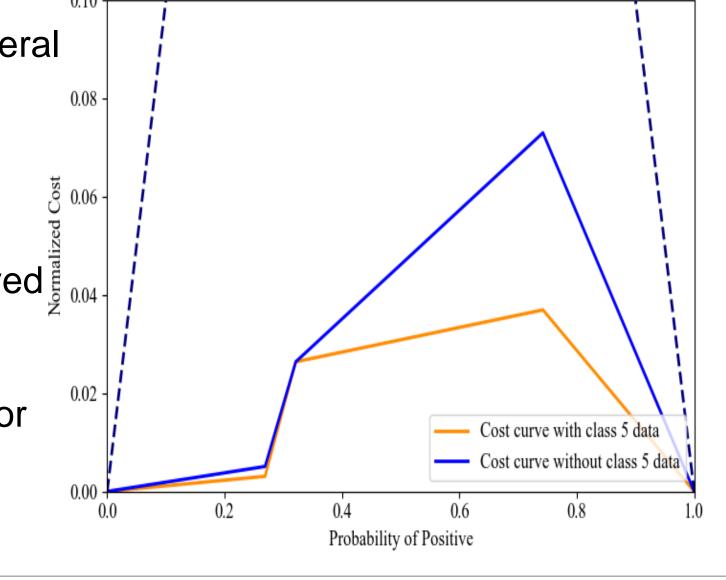
■ Method

$$DBC = \begin{cases} \frac{Ip - Ip_{min}}{Ip_{std}} + \frac{Bt - Bt_{min}}{Bt_{std}} & potential \ DBC; \\ \frac{Ip - Ip_{min}}{Ip_{std}} + \frac{Bt - Bt_{min}}{Bt_{std}} + \frac{Ptot - Ptot_{min}}{Ptot_{std}} + \frac{CQrate - CQrate_{min}}{CQrate_{std}} & potential \ DBC; \\ 0 \ undisruption; \end{cases}$$

Training set filtering by DBC improves general -ization.

☐ Cost Curve Evaluation

- Models trained with high-DBC shots removed perform better in high-risk phases.
- Normalized DBC cost complements AUC for model evaluation.



Conclusion

- Anomaly detection transfer method: Enables disruption prediction from the first shot.
- ☐ PhyDANet method : Balances physics and data-driven learning.
- □ DBC framework : Provides risk-aware model evaluation and training.
- Layered strategy ensures safety and adaptability throughout all toka
 -mak lifecycle.

