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Disruption Budget Consumption (DBC) Framework

Introduction

Physics-Guided Transfer Learning

Accurate disruption prediction is one of the keys for tokamaks to be 

commercially viable reactors. But these are some chanlleges for 

future tokamak disruption prediction.

 Physics-guided Domain Adaptation Network (PhyDANet)
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➢ Anomaly detection from the first shot.

➢ Physics-guided transfer learning with limited data.

➢ Existing-machine data assistance.

➢ 2 EAST shots: Physical loss boosts performance.

 Cost Curve Evaluation

 Machine learning models struggle with cross-machine general-

ization and scenario adaptation.

We propose a phased strategy for different operational phases:

➢ Disruption Budget Consumption (DBC) for risk-aware evaluation

Work

Background

Anomaly Detection & Cross-Tokamak Transfer

 Developed E-CAAD anomaly detection model
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 Trained on J-TEXT, deployed on EAST 

from first discharge.

 Strategies:

➢ Adaptive learning from scratch.

➢ Adaptive alarm threshold adjustment.

 Result

➢ Disruption prediction from the first discharge.

➢ Model automatically adapts to dynamic changes 

in operation scenarios

➢ Trained on non-disruptive samples, uses disruptive precursors when available.

➢ Combines physics constraints (e.g., density, q-limits) with ML.

➢ Uses domain adaptation (DANN, MMD) + reconstruction.

 Result

➢ 20 EAST shots: Domain adaptation + reconstruction → TPR > 94%.

➢ Models trained with high-DBC shots removed 

perform better in high-risk phases.

➢ Normalized DBC cost complements AUC for 

model evaluation.

➢ Quantifies impact of disruptions in different operational phases of a tokamak 

plasma discharge

 Purpose

 Method

➢ Training set filtering by DBC improves general

-ization.

Data + Physical Loss +Reconstruction
No physics 
guidance

Only EAST
2 shots 0.8357 0.8039 0.7992

20 shots 0.8902 0.9053 0.8756

J-TEXT+EAST
Domain 

Generalization

J-TEXT 1021 shots
EAST 2 shots

0.8026 0.7762 0.8094

J-TEXT 1021 shots
EAST 20 shots

0.9449 0.9475 0.9212

Conclusion

 Anomaly detection transfer method: Enables disruption prediction 

from the first shot.

 PhyDANet method : Balances physics and data-driven learning.

 DBC framework : Provides risk-aware model evaluation and training.

 Layered strategy ensures safety and adaptability throughout all toka

-mak lifecycle.

 Due to differences in structure, operating parameters, and other 

factors,  the data driven models are difficult to transfer between 

tokamaks.

 During the initial operation of the new device, the data is scarce, 

so it is difficult for model training and hyperparameter selection.


