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1. INTRODUCTION 

Alfvén waves and energetic particles, resulted from fusion reaction and auxiliary heating, are crucial to the 
performance of Tokamak devices. The theoretical research on low frequency drift Alfvén waves (LFDAW) is 
based on the general fishbone-like dispersion relation (GFLDR) and gyrokinetic theory [1]. Besides recovering 
diverse limits of the kinetic magnetohydrodynamic (MHD) energy principle, the GFLDR approach is also 
applicable to electromagnetic fluctuations, which exhibit a wide spectrum of spatial and temporal scales consistent 
with gyrokinetic descriptions of both the core and supra-thermal plasma components. Formally, the GFLDR can 
be written as 

  iΛ = δ𝑊𝑊𝑓𝑓 + δ𝑊𝑊𝑘𝑘, (1) 

where Λ is the generalized inertia, and 𝛿𝛿𝑊𝑊𝑓𝑓 and 𝛿𝛿𝑊𝑊𝑘𝑘 are, respectively, fluid and kinetic potential energy of 
electromagnetic fluctuations. By taking Λ = 0, we can calculate the accumulation point of the waves in the 
frequency continuum. 

In the original theoretical works on LFDAW, ions considered in the kinetic analysis are assumed to be well 
circulating [3]. Later on, the kinetic analysis was extended to a neoclassical theory by including the deeply trapped 
ions and electrons [2]. Moreover, the researches mentioned above are all based on the 𝑠𝑠 − 𝛼𝛼 model in Tokamak 
plasmas with circular configuration. However, the effects of general magnetic geometry and full 
circulating/trapped particles are not included in previous researches. Especially, the particles near 
circulating/trapped separatrix are not included in the previous theoretical models. In order to obtain a better 
understanding of experimental observations and provide a more precise kinetic model for theoretical researches, 
we need to include the general magnetic geometry and full orbit effects without assuming well-circulating or 
deeply-trapped ions and small ion orbit width.  

2. UP-DOWN SYMMETRY AND PSEUDO-ORTHOGONALITY  

For the circular up-down symmetric configuration, the magnetic field B = 𝐵𝐵0(1 − ϵ cosθ), where ϵ = r/𝑅𝑅0 is 
the inverse aspect ratio. In order to study the responses of trapped and circulating particles, the canonical angle 
can be introduced as 

𝜗𝜗𝑐𝑐 = 𝜔𝜔𝑏𝑏𝑏𝑏 ∫
𝑑𝑑𝜗𝜗0

′

𝜃𝜃�̇�𝑠

𝜗𝜗0 ,       (2) 

where the bouncing frequency ωbs = 2π/�∮ dϑ0/θṡ�. In long wave length limit, the orbit width of both 
circulating and trapped particles can be neglected. And with up-down symmetry, the following pseudo-
orthogonality relations for both circulating and trapped particles can be given as [4] 

                        ∮ sin𝑚𝑚ϑ0 cos 𝑙𝑙 ϑ𝑐𝑐 dϑ𝑐𝑐 = ∮ cos𝑚𝑚ϑ0 sin 𝑙𝑙 ϑ𝑐𝑐 dϑ𝑐𝑐 = 0,    (3) 

where 𝑚𝑚 and 𝑙𝑙  are integers. The relations above can greatly simplify the calculation for our problem. For 
circulating ions, we can define the weight function 

𝑀𝑀 = 1
π ∮ sin ϑ0 sin ϑ𝑐𝑐 𝑑𝑑ϑ𝑐𝑐 ,      (4) 
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which is illustrated in Fig. 1 by comparing with 𝑀𝑀′ = 1
π ∮ sinϑ0 sin 2 ϑ𝑐𝑐𝑑𝑑ϑ𝑐𝑐 . Similarly, the weight function for 

trapped particles can be defined as 𝐿𝐿 = 1
π ∮ sin ϑ0 sin ϑ𝑐𝑐 𝑑𝑑ϑ𝑐𝑐  . These functions can indicate the coupling between 

the trigonometric harmonics in 𝜗𝜗0 and 𝜗𝜗𝑐𝑐 , which is related to the resonant contribution of the harmonics of the 
bouncing frequency. And the values of M and L versus pitch angle variable λ give a rough estimate of the 
contribution from particles with different orbits. Thus, the value of the weight function M in Fig. 1 show that the 
well passing assumption is valid for the majority of passing ions. And the value of 𝑀𝑀′shows that the contribution 
from second harmonic in bouncing frequency resonance can be neglected. Similarly, we can conclude that the 
main contribution of trapped particles comes from the ‘medium’ trapped ones.  

  

Figure 1. Value of weight function versus pitch angle variableλfor ϵ = 0.1. 

3. NUMERICAL RESULTS 

With the weight functions defined above and the GFLDR in Eq. (1), an interpolated frequency formula of the 
Beta-induced Alfvén Eigenmodes (BAE) in fluid limit is given as 

                       𝜔𝜔𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑞𝑞𝜔𝜔𝑡𝑡𝑡𝑡�𝜏𝜏 + 7
4
− 1.7𝜏𝜏√𝜖𝜖 − 0.2√𝜖𝜖，              (5) 

where q is the safety factor, 𝜔𝜔𝑡𝑡𝑡𝑡 is the thermal transition frequency, 𝜏𝜏 is the ratio of electron temperature over 
ion temperature. The comparison with the numerical result is presented in Figure 2.  

 

Figure 2. Neoclassical correction on the frequency of BAE for τ≈1. 
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