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FAST ION TRANSPORT INDUCED BY EDGE LOCALIZED MODES
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 Fast ions exhibit a notable acceleration during edge localized modes
(ELMs) in tokamak devices.

* This paper presents an analytical investigation into the phase-space
transport of fast ions driven by ELMs.

 Contrary to previous simulation results, it is shown that ELMs with low-
frequency characteristics are inefficient at accelerating fast ions.

 Instead, the transport of fast ions is dominated by radial particle
transport, resulting from the exchange of canonical toroidal angular
momentum.

* The associated diffusivity increases sharply for high-energy particles,
making fast-ion loss measurements in velocity space appear as an
acceleration process

Background

* \Velocity space measurements of fast-ion losses reveal a population at
energies well above the main NBI injection energy during ELMs [Galdon-
Quiroga PRL, 2018;NF, 2019].

e Two populations can be observed at two main different pitch angles of
/4 (Q7,passing) and /3 (QS8, trapped).

 NBI injects neutrals at three different energies EO = 82keV , EO/2 and
EO/3.

* The observation of high-energy tail is reproducible and well correlated
with the NBI heating and the occurrence of ELMs.

 High-energy population exhibits a pitch angle structure (‘spikes’) that
depends on the beam source and q.
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Gyrokinetic Model

* The gyrocenter Hamiltonian in 5D phase space
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Fluctuations

* During the ELM crash a broad spread in frequency is generally measured
in AUG butlow frequencies w ~ 10kHz are dominant, with n~5 and
6B,/B ~ O(1073).

* The inter-ELM modes in a high frequency range w ~ 100kHz appears in
the linear and early nonlinear phases, with n ~ 10 and 6B,/B ~ O(10™ -
1074).

 Therefore, the perpendicular magnetic perturbation dominates the
perturbed Hamiltonian of fast ions.

Fast lon Acceleration

* An estimate for the time required for the particle acceleration
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* Substituting into parameters of low-n modes and inter-ELM modes,

respectively, one can estimate the required time as
Atiow ~ O(10%) /wiow ~ 18, Atins ~ O(10* — 10°) /wint ~ 1 — 10s.

At ~

e one concludes that both the inter-ELM modes and the dominant low-n
modes cannot account for the observed fast ion ‘acceleration’ on ~

100ps.
* Fast-ionis not accelerated by ELMs.

Lagrangian Perspective

Wave-Particle Resonance

* Near asingle island, the maximum energy exchange is °¥=

* The maximum canonical momentum exchange, meanwhile, is %=

* (Qualitatively, for both the low-n modes and inter-ELM modes during
ELM crash, the canonical momentum exchange dominates the transport.
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Lagrangian Perspective

Fluctuations
An arbitrary perturbation, say 6Q, can be decomposed into the Lagrangian

description by introducing the fast (t,) and slow (t,) time scales
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FDOW

 Due to the finite drift orbit width (FDOW) effect, the orbit-averaged fields
for trapped particles are typically smaller than those for circulating
particles, leading to weaker cross-field transport.

* This is consistent with the experimental observation that trapped particles
has a weaker FILD signal.

Eulerian Perspective

Quasilinear Theory
In the linear limit, the gyrokinetic equation can solved as
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where the propagator L accounts for the wave-particle interaction.

 The effective potential e

0P = Jo(dop — dv) + Jo g
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is respectively due to three forces: the parallel electric field which vanishes
in the ideal MHD limit; vy X 6B ; and the mirror force.
 The explicit quasilinear transport equation
oJ oJ
* The interaction of fast ions with turbulence is constrained to a two-

dimensional J = (P7,E) manifold embedded in the full 6D phase space.

 The associated transport coefficients are defined as
Dpep, = _Im[n“)|i¢|“)] u,2|2<b|‘)] nw|i¢|2]
* In the low-frequency ELM scale, the diffusion will be constrained to a 1D

manifold in Pg .

‘Acceleration’

* For circulating particles, as an example, the radial diffusion coefficient D,,
o v3 due to §® < wyand the summation over p.

* In contrast to the microturbulence case [Zhang, PRL, 2009], high energy
particles will be transported faster, leading to FILD signals seems like an
acceleration process.

* For typical AUG parameters, the required time for cross-field diffusion at
edge is on the order of At ~ 100us, consistent with experimental
observations.

‘Spikes’

* The resonance condition for circulating and trapped particles are,
respectively,
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W lwy —nwg = 0.

* Note that the circulating particle resonance condition depends on poloidal
mode number, spikes correspond to multiple phase space islands for
circulating particles.

CONCLUSION

* The ELM crash cannot effectively accelerate fast ions, it induces an
efficient radial transport of fast ions with Drr « v3, yielding a strong FILD
signal in high energy tail.

 Multiple spikes in pitch angle are due to multiple phase space islands for
circulating particles.

 Theoretical predictions agree with the experimental observations:

e Circulating particles are more easily transported, so the corresponding
FILD signal is stronger.

* The required time for cross-field diffusion process is estimated as t ~
100us, consistent with experimental observations.
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