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Achieved a 1 MA hydrogen—-boron (p—11B) discharge in the ENN Xuanlong-50U (EXL-50U) spherical torus (ST).
1. Non-Inductive Current Start-up: Enabled by non-inductive electron cyclotron resonance heating (ECRH) in a trapped particle configuration (TPC)

2. Boron-Rich Fueling: A boron-rich fueling scheme (30% diborane and real-time boron powder injection) enhanced current ramp-up rate by 78% compared to hydrogen-only plasmas.

3. Stable Operation: Achieved stable, repeatable operation at 1 MA, with active control of the ramp-up rate.

4. Optimized Ramp-up: Current ramped from 20 kA to 1 MA with the fastest speed reaching 7 MA/s and an average of 3.4 MA/s.

Synergy between EC and CS, along with real-time boronization, contributed to a 100% discharge success rate and a rapid ramp-up, presenting a promising integrated approach for future high-current fusion

reactors.

1.Validated framework for high-performance plasma

Synergistic interaction of CS, PF, and EC drives success.

- Multi-harmonic ECRH-driven energetic electron generation

- Real-time boron fueling

- Current ramp-up using both CS and non-inductive methods.

The discharge process is divided

2.Early discharge optimized framework

into the following stages: ! Start-up phase ot e e lll. Flat-top phase
lp:00/0~100/0, ne:~1019m-3 lp:100/0~1000/0, ne:1019m-3—1020m_3 Ip:100%, ne:~1020m_3:

* The non-inductive start-up phase Purely non-inductive mode ECCD: 100% — ~10% Bootstrap current>70%
. . . BS: 0% — ~70% ~20%
 The early phase prior to magnetic surface evolution ECCD gt N ECCD+NBCD+LHCD ~20%

CS:~5%-10%, current feedback control

* The current ramp-up phase during which the last = L SR ECCD: NTM suppression

Future Directions: Optimizing plasma start-up, ramp-up, and closed flux surface (LCFS)
confinement for future devices like ENN He Long-2 (EHL-2) and advancing stabilizes, the flat-top phase
the hydrogen-boron fusion path (I, ~ 3 MA)!1-4],

- Limited Vs budget due to compact ST geometry.

- Impurity control and heating constraints during start-up and ramp-up.

* The ramp-down phase

* The flat-top and ramp-down phases are beyond the

scope of this discussion

3.Experimental analysis and optimization of EXL-50U

By adjusting the toroidal field to B, = 1.0 T, 50 GHz EC enables multi-harmonic resonance absorption (Fig. 3). Compared with the 28 GHz scheme at lower 4 3.3 The ramp-up phase A
B:, the 50 GHz configuration significantly improves the formation of non-inductive current. Multiple harmonic layers are observed to overlap within the

vacuum vessel, which strongly supports efficient electron acceleration.

gradually expands or

Fig. 1. Visible-light camera sequence showing the evolution of plasma shape during current ramp-up.

The fastest ramp-up rate reached 7 MA/s.
Normal ramp-up rate reached 3.2 MA/s.
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4.1 MA discharge achievement 5.Summary and future plans
EXL-50U has reproducibly achieved 1 MA hydrogen—boron discharges. A controlled CS swing from +30 kA to —40 kA was applied, consuming 1. TPCoutperforms FNC by broadening operational windows, reducing

approximately 1.08 Vs (¥90% of the available flux). Combined with boron-rich fueling (30% B,H¢ + 70% H;) and synchronized boron injection,
enhanced the initial ramp-up rate by 78%, reaching 3.4 MA/s within the first 70 ms. During this stage, Thomson scattering measurements

indicated a core electron temperature exceeding 3 keV with
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Fig. 12(a). Xomode simulation: central electron
density and temperature profiles, with power
deposition broadly distributed around p = 0.5
(peak ~0.03 W/m?) and a bipolar driven-current
distribution. The total absorption fraction is about
15%.

a line-averaged density of ~¥1 x 10" m™,

PF flux consumption, and ensuring stable non-inductive initiation.

2. PF coil shaping is critical in the early phase: optimized vertical fields
compress flux surfaces, enhance mirror ratio, and improve
confinement, supporting faster and more stable ramp-up.
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