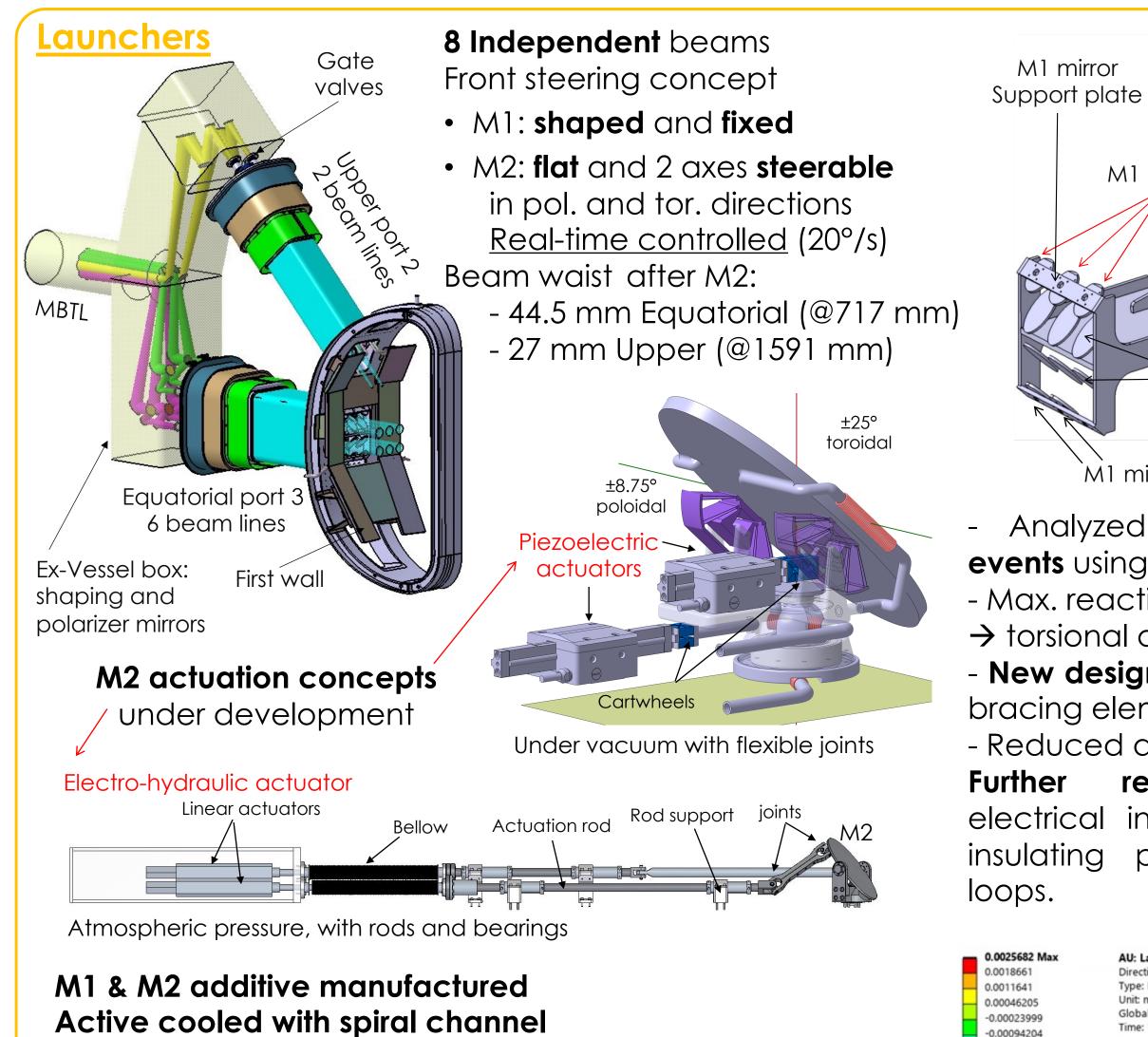

Overview of the design and procurement of ECRH system for DTT

S. Garavaglia^(1,*), A. Romano ^(2,3), A. Bruschi⁽¹⁾, F. Fanale⁽¹⁾, G. Granucci^(1,3), M. Recchia^(4,5), N. Rispoli⁽¹⁾, B. Baiocchi⁽¹⁾, S. Bertolami⁽⁶⁾, M. Bonesso⁽⁷⁾, D. Busi (8), A. Calamida⁽²⁾, D. Cester^(7,9), M. De Nardi⁽⁴⁾, R. Dima⁽⁷⁾, F. Di Paolo⁽⁶⁾, P. Fanelli⁽¹⁰⁾, G. Favero^(3,11), L. Figini⁽¹⁾, E. Gajetti⁽¹²⁾, A. Maistrello⁽⁴⁾,

A. Moro⁽¹⁾, A. Pagliaro⁽⁸⁾, A. Pepato⁽⁷⁾, P. Platania⁽¹⁾, P. Rebesan⁽⁷⁾, A. Salvitti⁽³⁾, L. Salvò⁽⁷⁾, L. Savoldi⁽¹²⁾, A. Simonetto⁽¹⁾, M. Turcato⁽⁷⁾ and DTT contributors⁽³⁾


(1) Istituto per la Scienza e la Tecnologia dei Plasmi, CNR, Milano, Italy (2) ENEA, Fusion and Nuclear Department, Frascati (RM), Italy (3) DTT S.C.a r.l., Frascati (RM), Italy (4) Consorzio RFX (CNR, ENEA, INFN, University of Padova, Acciaierie Venete SpA) Padova, Italy (5) Istituto per la Scienza e la Tecnologia dei Plasmi, CNR, Padova, Italy (6) University of Rome Tor Vergata, Department of Electronics Engineering, Roma, Italy (7) National Institute for Nuclear Physics, Padova, Italy (8) Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy (9) Department of Physics and Astronomy, University of Padova, Italy (10) Department of Economy, Engineering, Society and Business (DEIM), University of Tuscia, Viterbo, Italy (11) Department of Management and Engineering, University of Padova, Vicenza, Italy (12) MAHTEP Group, Dipartimento Energia "Galileo Ferraris", Politecnico di Torino, Torino, Italy (*) saul.garavaglia@istp.cnr.it

Cryostat flange

Cantilevered plate

with vertical ribs

Analyzed under **plasma disruption** events using FE simulations. - Max. reaction forces and torques → torsional deformation up to 49 mm New design with a boxed structure and bracing elements to **enhance rigidity**.

M1 mirror

M1 mirrors

M1 mirrors

- Reduced deformation to ~11 mm. Further reduction expected with electrical insulation (ceramic bushings, insulating plates) to prevent current loops.

Equatorial antenna

Beat-length

waveguide

- optimal cooling - high-thermal conductivity (copper alloys) Deformation resulting

from force and moment reactions extracted by EM analysis loads generated during VDE II scenario.

Ray-tracing (GRAY code) simulations show ~1% of XM coupling can cause reflected power (>3 MW/m²) at the first wall. Beam polarization control is essential to ensure safe operation and protect diagnostics.

Transmission Lines

M2 material choice:

Quasi-optical propagation of 8 Gaussian beams in a multi-beam (MB) confocal layout, minimizing distortion and operating under vacuum to reduce arcing risk. Single-beam (SB) sections connect MB to the gyrotrons/antennas with combiner/splitter mirrors.

~80 mirrors per cluster over ~100 m of beam path.

Study ongoing to achieve efficient cooling to reduce

Variable depth complementary spiral channel option

proposed as efficient and simply cooling solution

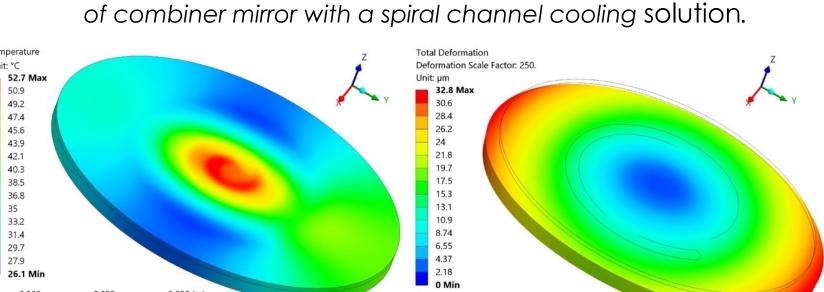
(1 MW beam, plasma, and stray radiation).

surface deformation and stress under high thermal loads

- minimizing induced currents -> low electrical conductivity.

Thermomechanical studies show AISI 316 has limits → AISI 316 + Cu inserts

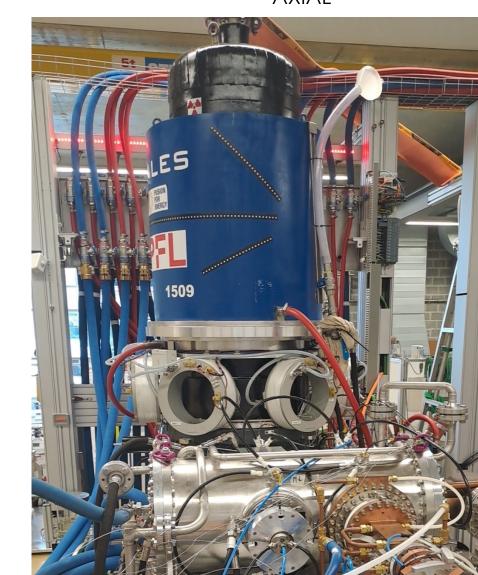
or the high-strength Nickel alloy (Inconel 718) as possible alternative.


- Transmission efficiency >90%.
- Universal polarizer system (P1–P2) for matching the injected wave to the plasma.

Analytical sinusoidal-grating polarizer model was validated (≈ 0.5% error vs. HFSS) and enables realtime polarization control. All required angle coverage can be obtained with two elliptical polarizers.

Cooling solutions tested: spiral channels and TPMS structures.

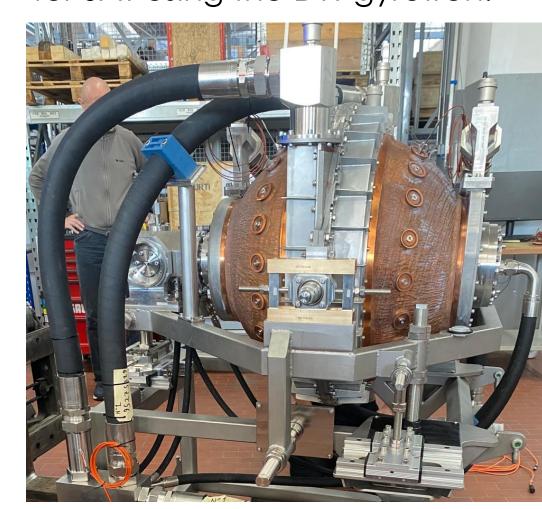
- **SB mirrors:** max deformation $\approx 30 \, \mu \text{m}$.
- Combiner/splitter mirrors (TPMS): deformation $\approx 60 \, \mu \text{m}$.
- Two CuCrZr prototypes additive manufactured; Temperature spiral channels selected as baseline, TPMS option for polarizers.
- MB mirrors:
 - **multi-spiral cooling** deformation ≈ 60–90 µm; - simpler single-spiral design under study for easier fabrication and monitoring.


Temperature field (Left) and corresponding total deformation (Right) of combiner mirror with a spiral channel cooling solution.

Gyrotron and HV Power Supplies

Gyrotron specifications:

- Frequency: 170 ± 0.3 GHz
- Power: ≥ 1 MW
- Pulse length: ≥ 100 s
- Duty cycle: > 10%
- TEM₀₀ purity mode: > 98%
- Efficiency: ≥ 40%
- Reliability: ~ 95%
- He-free SCM, B_{AXIAL}=**6.78 T**


Power supplies:

- 1 x Main HVPS: -60kV, 110A (2 gyrotrons fed in pair)
- 1 x Body PS: **+30kV**, **100mA**
- 1 filament heater: -25A, 35 V
- Conceptual design completed - Technical specifications defined
- First 8 sets on site in 2031

International procurement with the F4E • Supplier chosen: **Thales**

- Interim FAT performed at FALCON (EPFL)
- Contract for next 15 gyrotrons started
- #14501 800 **§** 600 400 Load $B_{CAV} = 6.69 T$ $V_{ACC} = 79.5 \text{ kV}$ 200 $V_{BODY} = 24.5 \text{ kV}$ $I_{BEAM} = 48 A$ ⁵⁰ Time (s)
 - 4 **RF loads** procurement in progress
 - Supplier chosen: Curti-LT Calcoli
 - Completion in 2026.
 - First RF load FAT completed
 - Being delivered to FALCON for SAT using the DTT gyrotron.

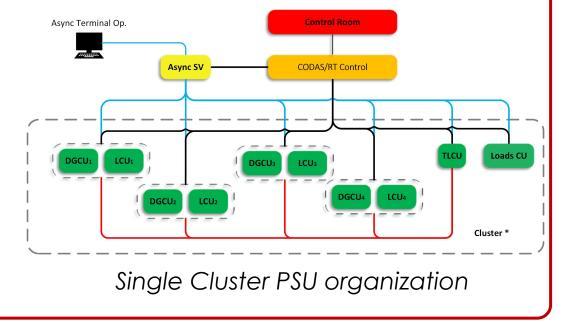
Short evacuated Connection Line to connect the gyrotron with RF load

- Designed to enable the tests of:
- the output beam of the gyrotron (FAT) different mirror technologies for R&D

Control system

Network of Plant Systems Units (PSU) connecting CODAS, Plasma Control System (PCS) and ECRH components.

PSU structure:


- **SCU**: PLC-based, Protections + slow communications (≤1kHz)
- FCU: PC-based, RT control + HVPS references generator.
- FA&SU: Arc detection + fast interlocks.

thermal/hydraulic monitoring.

In CODAS/PCS, the **ECRH plant supervisor** manages all **PSUs**; an **Asyn**chronous SuperVisor handles independent gyrotron testing and maintenance.

PSU types:

- Double Gyrotron CU: gyrotron pair, PS + auxiliaries +
- Transmission Line CU: RF transmission, vacuum, mirror
- alignment, temperature + arc detection. Launcher CU: manage mirrors + polarizers,
- temperature + arc detection.
- LoadCU: RF Load, monitors RF power (bolometric) + safety

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

