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Continuous Li injection with the Impurity Powder Dropper [1] in LHD:

• Improves plasma performance and energy confinement by strongly

reducing plasma turbulence.

• Enhances the transport of mid/high-Z impurities injected by TESPEL due

to a more positive convection coefficient and increased classical transport.

• Reduces intrinsic impurity levels via a more positive Er in the Scrape Off

Layer and a wall-conditioning effect due to Li-deposition.

ABSTRACT Reduction of intrinsic impurities and effect on Er

Collisional particle fluxes computed by SFINCS

NC particle fluxes computed by SFINCS [7]

• NC bulk particle fluxes become more 

positive while classical is minimal.

• NC Zavg fluxes become more negative to 

keep ambipolarity, this allowing deeper Li

penetration and reduced core turbulence

• Classical transport dominates for Mo31+

It doubles due to Li, this enhancing high-Z

flush out from the plasma core.

Comparison of transport coefficients estimated by SFINCS [8] & STRAHL [9]

SIMULATIONS

A major challenge for the development of stellarator-based fusion reactors

is the establishment of operational scenarios that sustain long-duration

confinement of bulk particles and energy while mitigating high-Z impurity

accumulation. These have not been achieved simultaneously before, but

prior investigations on LHD showed some progress:

• At low-ne, high-Ti: the “impurity-hole” allows obtaining a highly hollow

impurity profile due to enhanced thermo-diffusion [2].

• At high-ne: supplementary ECRH enhances the expulsion of core

impurities [3].

• At low-ne: low-Z (B, BN or C) powder injection with IPD improves energy

confinement by reducing turbulence [4, 5, 6].

BACKGROUND

Improvement of plasma performance and energy confinement

Reduction of plasma turbulence

Reduction of mid/high-Z core impurities injected with TESPEL [7]

EXPERIMENTAL RESULTS

Low-Z impurity powder dropping can improve plasma performance,

provide real-time wall conditioning and flush out mid/high Z impurities [6].

• As turbulent transport is reduced across the full plasma radius  plasma

performance and energy confinement are improved  steepening of the

temperature profiles and increase of outward neoclassical transport 

shoulder in the hollower electron density profile.

• First-observation of mid/high-Z core impurities removal  mainly due to

an increase of classical transport [10] by collisions between Ti or Mo and

the Li that led to more positive V, even in presence of reduced turbulence.

• The reduction of intrinsic impurity levels is possibly due to a two times

more positive Er in the SOL, the conditioning effect of Li deposition on the

chamber walls and increased collisions with Li-atoms at the plasma edge.

CONCLUSION
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Square-root dependence of V
on charge is observed in STRAHL:
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And D: 4-5 times NC prediction  observed enhanced impurity 
transport shows a combination of collisional and turbulent effects.

Ti19+: 17 % reduction in τ, 40% in V

w/o Li: D = 0.11 m2/s V = -1.55 m/s

with Li: D = 0.11 m2/s V = -0.95 m/s

Mo31+:  78 % reduction in τ, 40% in V

w/o Li: D = 0.085 m2/s V = -2 m/s

with Li: D = 0.085 m2/s V = -1.2 m/s

Possible τ dependence on Z: the higher Z,

the stronger τ reduction with Li-injection.
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