

The Status and Design Challenges of the **Heating and Current Drive Systems for DTT**

G.Granucci^{1,2}, A.Romano^{3,2}, S.Ceccuzzi^{3,2}, A.Murari^{4,2}, P.Agostinetti^{4,5}, A.Bruschi¹, A.Cioffi², F.Fanale¹, A.Ferro⁴, S.Garavaglia¹, A.Moro¹, A.Pepato⁶, G.L. Ravera³, M.Recchia^{4,5}, N.Rispoli¹, C.Salvia⁷, A.A. Tuccillo⁸ and the DTT Contributors

(1) Institute for Plasma Science and Technology, National Research Council (ISTP-CNR), Milano, Italy, (2) DTT S.C.a r.l., Frascati, Italy, (3) ENEA, Fusion and Nuclear Safety Department, C.R. Frascati, Frascati, Italy, (4) Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova, Italy, (5) Institute for Plasma Science and Technology, National Research Council (ISTP-CNR), Padova, Italy, (6) National Institute for Nuclear Physics (INFN), Padova, Italy, (7) University of Padua, Padova, Italy, (8) CREATE, Napoli, Italy

gustavo.granucci@dtt-project.it

Introduction

NBI System

Divertor Tokamak Test facility aims

- Power exhaust studies in reactor relevant conditions (ITER and DEMO), with additional 45 MW of heating power to load the divertor
- □ Test of different magnetic configurations (SN, DN, X-divertor, NT)

Main Parameters							
R [m]	2.19	Pulse length [s]	100				
a [m]	0.70	Ptot [MW]	45				
lp [MA]	5.5	Vplasma [m³]	≈30				
Bt [T]	6.0	Psep/R [MW/m]	15				
βΝ	1.5	<te> [keV]</te>	6.1				
ne/ng	0.42	<ne> [1020m-3]</ne>	1.8				

OVP-2790, P5-3447 G.M.Polli OV-3323 P.Martin

- HCD Systems based on consolidated technology s Three-phase installation plan (each ~5 years), accordingly to the DTT Research Plan
- □ Integration challenges in the design and development of the HCD systems, assuring flexibility to support all the plasma configurations foreseen

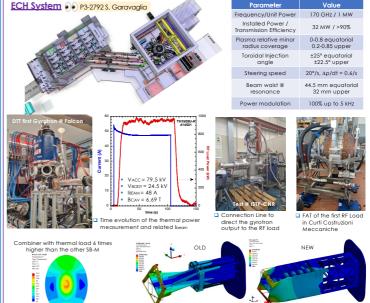
System	Frequency / Energy	Phase / Installed Power	Engineering solution for Heating flexibility		
ECH	170 GHz	P1 – 16 MW P3 – 32 MW	Front-steering launchers motion for central heating and MHD stabilization with indipendent poloidal and toroidal motion		
ICH	60-90 MHz	P1 – 4 MW P3 – 8 MW	Movable antenna design to ensure effective coupling even with large plasma-antenna gaps		
NBI	510 keV	P2 – 10 MW	Beam energy adjustability via PS steps of 200 kV to allow operation in low-density plasma and during current ramp-up/down phases		

Indicative Comparison of electromagnetic loads

	Bo (T)	I₂ (MA)	R₀ (m)	a (m)	$I_p \frac{B_0 R_0}{R_0 + a} \frac{1}{a^2}$
JET	3.4	5	2.96	1.25	7.6
AUG	3.2	1.4	1.65	0.5	13.7
JT60SA	2.25	5.5	2.96	1.18	6.3
EAST	3.5	1	1.85	0.45	13.9
KSTAR	3.5	2	1.8	0.5	21.9
ITER	5.3	15	6.2	2	15
DTT	5.85	5.5	2.19	0.7	49.7

■ Re-ionization due to presence of background ags, D+ deflected

- Challenge for movable items facing the plasma due to the mechanical constrains for the thermal loads and the forces induced by disruptions
- Comparison of the parameters playing the main role in the intensity of such forces:


Beam Energy

Accelerated D⁰ Current

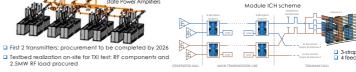
Beamlet divergence

preliminarily explored

- I_P, local B_T, disruption time∝1/a²
- □ DTT, with its compactness and high field/plasma current, is well above the level of e.m. loads in other tokamaks
- A proper and robust mechanical design of all movable part is required, with the exclusion of materials with high electrical conductivity or to set higher limits for tensile yield strength for the allowable materials
- ☐ In addition, the pulse length of DTT requires an accurate cooling of all components transmitting high power to

50 s

> 7 mrad


Frequency range 60-90 MHz Pulse length 50 s Max available CW power 480 kW Power to SN plasma ≥ 3 MW

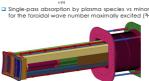
Forces, moment reactions and max displacement, under the em loads generated during a vertical disruption event scenario ☐ Launchers supporting structures optimized: tot def. max 11.5 mm

High-thermal conductivity materials, with low electrical conductivity

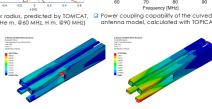
☐ Insulation to be introduced to limit current loops (def. < 10 mm)

☐ Launching mirrors: efficient cooling, minimizing induced currents




Air insulated beam source, with ion source and accelerator connected to the VV ■ Modular Multilevel Converter solution

- - Negligible effect of the shielding on the plasma poloidal field
 - EOF Instant: max shield response field ≈ 0.35 G



□ CuCrZr in AM (laser powder bed fusion) □ Spherical shape for ion beam focusing □ Double cooling spiral adopted, increasing □ Temperature below critical values ☐ Full-size finished Plasma & Extraction Grids printed (4x5x17 beam-lets)

Semi plug-in concept, Antenna box installed by remote handling from inside (Faraday screen and

- enna for major disruption by CREATE
- ation and optimization of the whole structure is on-going to deformation below 5 mm

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

