Prediction of Heat Flux Splitting by Non-Axisymmetric Magnetic Field in the Realistic Tokamak Wall and Divertor Based on 3D CAD Model

¹Kimin KIM, ²Taeuk MOON, ¹Chanyoung LEE, ²Eisung YOON, ¹Jae-Min KWON

¹Korea Institute of Fusion Energy, Daejeon, Republic of Korea ²Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

31th IAEA Fusion Energy Conference October 13-17, 2025 Chengdu China

- Prediction of Heat Flux Splitting by 3D Magnetic Field
 - Field line tracing
 - Popularly utilized & successful qualitative analysis of experimentally observed lobe structure
 - Provide a guide to understand the role of plasma response
 - Full consideration of 3D plasma transport
 - High physics fidelity
 - Rich physics with atomic process, computationally demanding
- Orbit Following Simulation for Heat Flux Splitting Prediction
- Trace test particle full orbit motions → Collect lost particles information colliding with divertor plates → Lobe structure
- Key Simulation Inputs
 - Perturbed equilibrium with plasma response GPEC
 - Ion profiles Ti, ni for initialization of test particles & weight function
 - Pedestal structure, distinguishing L- and H-mode edge

3. Schematics of Collision Detection Algorithm (a) Broad phase (b) 1 Only ions close to mash are selected to mash are selected ions are chosen to mash are sel

- Integration with POCA full orbit following simulation
 - More accurate tracing of full particle orbits in the realistic 3D geometry, incorporating detailed segmental structures of the wall and divertor of KSTAR

- Both gives similar divertor striation patterns
 - Based on the same 3D perturbed equilibrium
 - Discrepancies in detailed structure
- Stronger striation patterns by FO

1.52

 Better illustrations for relative peak amplitudes, providing heat profile-like lost particle distribution

4. Heat Flux Splitting in the Realistic Wall and Divertor based on 3D CAD Model

- n=1, 0-degree phasing

 1.0e+10

 1e+9

 1e+8

 1e+6

 100000

 1.0e+04
- FO simulations with 3D CAD geometry qualitatively show clear n=1 structures
- Highlight detailed hot spots of intense collisions and heat deposition
- Physics based weight function required for quantitative comparison and prediction

Outlook

- The newly developed simulation integrates full orbit following technique, collision detection algorithm, and 3D CAD based wall and divertor structure
- Integration into the digital twin framework is ongoing
 - Serve as a tool for maintenance and protection of machine components in present fusion devices
- Improvements for more physically consistent simulation
 - Initial phase-space test particle distribution
- Collisional effects
- 3D perturbed equilibrium
- Interactions with impurities

