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• NKN captures short-scale variation and long-scale trend simultaneously, 
while a single-scale kernel (RBF) cannot (Fig. 1).

• NARGP learns the correlation between low and high-fidelity data and 
utilizes it for extrapolative prediction (Figs. 2 and 3). Employing both 
NKN and NARGP is essential for improvement (Fig. 3).

• We have applied the multi-fidelity regression to the real-world dataset 
of turbulent diffusion coefficient from JET experiments [Narita (2023)], 
mimicking extrapolative prediction for (future) better-confinement 
plasma by using the existing training data (Fig. 4-1).  A combination of 
NKN and NARGP achieved improved extrapolative prediction (Fig. 4-2).

RESULTS
•Modeling turbulent transport plays a crucial role in fusion development. 

Various data may have different levels of fidelity: experiments, simulations, 
and reduced models. We aim to improve the predictive accuracy of 
turbulent transport by multi-fidelity data fusion. [Maeyama (2024)]

MOTIVATION

Multi-fidelity regression problem
Estimate the high-fidelity function
 𝑦𝑦h = 𝑓𝑓h(𝑥𝑥h) by fully utilizing 
low- and high-fidelity dataset.

Nonlinear Auto-Regressive Gaussian 
Process Regression (NARGP) 
 Lowest-fidelity: GP regression

𝑓𝑓l 𝑥𝑥 ~𝒢𝒢𝒢𝒢 𝑓𝑓l|𝜇𝜇l,𝑘𝑘l 𝑥𝑥, 𝑥𝑥′;𝜃𝜃l  
 High-fidelity: GP regression expressed by input 𝑥𝑥 and low-fidelity 𝑓𝑓∗l 𝑥𝑥

𝑓𝑓h 𝑥𝑥 = 𝑔𝑔h 𝑥𝑥, 𝑓𝑓∗l 𝑥𝑥 ,
𝑔𝑔h~𝒢𝒢𝒢𝒢 𝑓𝑓h|𝜇𝜇h,𝑘𝑘h (𝑥𝑥,𝑓𝑓∗l 𝑥𝑥 ), (𝑥𝑥′,𝑓𝑓∗l 𝑥𝑥′  ;𝜃𝜃h  

NARGP is a successive composition of GPs, which captures nonlinear and
𝒙𝒙-dependent correlation between multi-fidelity datasets. [Perdikaris (2017)]

Neural kernel network (NKN) [Sun (2018)]

NKN is a framework that composes basic 
(e.g., periodic, radial basis, linear, rational 
quadratic) kernel functions using a neural 
network architecture, realizing a highly-expressible kernel for GP regression.

METHODS

•Multi-fidelity data fusion provides a novel approach that combines the 
quantitativeness of experimental data with the physics-based 
extrapolability of theory/simulation.

•By integrating a highly-expressible NKN kernel and a multi-fidelity 
regression algorithm of NARGP, our model captures complex nonlinear 
correlations across multi-fidelity data and achieves improved 
extrapolative prediction.

  Key tricks
•  A complex kernel (such as NKN) is crucial for extrapolation by 

capturing short-time variation and long-scale trend simultaneously. 
• Dependence simplification by NARGP: Express complexity of high-

fidelity function 𝑓𝑓h 𝑥𝑥  by low-fidelity data 𝑓𝑓l 𝑥𝑥 .
• Interpolation recasting by NARGP: Eliminate the dependence on 

extrapolative parameter, e.g., 𝑓𝑓h 𝑥𝑥0, 𝑥𝑥1 = 𝑔𝑔h 𝑥𝑥0, 𝑥𝑥1, 𝑓𝑓l ≃ 𝑔𝑔h 𝑥𝑥1, 𝑓𝑓l .

CONCLUSION
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Low-fidelity data: 
less accurate but 
numerous

High-fidelity data: 
highly-accurate but 
sparse or limited range

Fig. 1 Comparison of expressiveness of kernel functions in single GP regression.

Fig. 2 Extrapolative prediction by multi-fidelity regression for a 1D test problem.

Fig. 3 Extrapolative prediction by multi-fidelity regression for a 2D test problem.

Input (12 dims.) Low-fidelity data High-fidelity data
R/Ln, R/LTe, R/LTi, ni/ne, 
Te/Ti, β, νee, q, s, ε, κ, δ

Linear growthrate γ and its 
wavenumber k (135 points)

Experimental turbulent diffusion 
coefficient Dexp (67 points)

Dataset:

Fig. 4-2 Extrapolative prediction by multi-fidelity regression for the JET dataset.

Fig. 4-1 Extrapolative problem setting for the JET dataset. The training data 
showing worse confinement (Dexp > 0.7) is used to predict the test data 
(showing better confinement, Dexp < 0.7). 
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