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Building predictive models for turbulent transport is a cornerstone of performance forecasting in fusion devices. 
This study introduces a multi-fidelity data fusion approach to turbulent transport modeling, effectively 
integrating low-fidelity simulation data with high-fidelity experimental data. By leveraging the correlations 
between these datasets, the method achieved substantial improvements from conventional regression in 
extrapolative predictability for plasma turbulent transport. These findings highlight the potential of multi-
fidelity modeling in advancing transport predictions crucial for the design of next-generation fusion devices. 

Understanding and predicting turbulent transport is a critical challenge in magnetic fusion research. To date, 
surrogate models based on gyrokinetic simulation databases or experimental data have been discussed 
extensively. We propose applying a multi-fidelity data fusion algorithm to turbulent transport modeling by 
treating theoretical, simulation, and experimental data with different accuracies, sample sizes, and parameter 
ranges. Multi-fidelity modeling is a methodology that combines less accurate but numerous low-fidelity data 
with highly accurate but sparse high-fidelity data to improve the overall predictive performance. The 
applicability of this approach was demonstrated in several problems related to plasma turbulent transport 
modeling [1]. This study aims to advance this approach further for extrapolative problems. 

We employ a multi-fidelity algorithm called nonlinear auto-regressive Gaussian process regression 
(NARGP) [2]. It is known that the kernel function design determines the model's expressive ability in Gaussian 
process (GP) regression. For applications to extrapolative problems, it is essential to use a complex kernel that 
can capture both short-term fluctuations and long-term trends. This study adopts neural kernel networks [3], 
allowing data-driven kernel generation and great flexibility. However, just improving the kernel design is not 
sufficient. We further discuss how integrating low-fidelity data can enhance extrapolative performance. 
   First, a two-dimensional test function was analyzed. A Bessel function was used as the high-fidelity data yh 
= fh(x0, x1) [Figure 1(a)], and their approximated envelope function was used as the low-fidelity data. Specifically, 
only high-fidelity data for 𝑥𝑥0 < 0 were used for training data. Figure 1(b) shows that conventional single GP 
regression fails to predict the value at the extrapolation region 𝑥𝑥0 > 0, whereas NARGP in Figure 1(c) gives a 
better extrapolative prediction. NARGP expresses the high-fidelity data not as a direct function of the input 
space, yh = fh(x0, x1), but as a function of an extended space involving both input (x0, x1) and the low-fidelity 
function fl(x0, x1), namely, yh = fh(x0, x1) = gh(x0, x1, fl). For x0 > 0, where no high-fidelity data were available, 
NARGP leveraged correlations with the low-fidelity data, converting the extrapolative problem into an 
interpolative setting, thus significantly improving extrapolative performance. This result demonstrates the 
ability of NARGP to effectively utilize correlations with low-fidelity data for extrapolation problems. 



Figure 1. Extrapolative prediction for a test function. (a) The two-dimensional test function fh(x0, x1). (b) 
Single GP prediction using only the test function data at the area surrounded by a red dashed square. (c) 

NARGP prediction using the high-fidelity and low-fidelity test function data. 

Next, the method was applied to a 
plasma turbulence transport dataset [1], 
where multiple local plasma parameters 
were used as input variables to predict 
experimentally observed turbulent 
diffusion coefficients. For multi-fidelity 
regression, linear growth rates and 
wavenumbers of micro-instabilities are 
incorporated as low-fidelity data. The 
extrapolative problem was set up by 
training the model using data with large 
diffusion coefficients and predicting those 
with smaller coefficients. Figure 2(a) shows 
that results from conventional GP 
regression indicate good agreement within 
the training data range but show poor 
predictive performance in the extrapolation region. Conversely, Figure 2(b) demonstrates that NARGP improves 
predictive performance even in the extrapolation region. Analysis of data points with large prediction errors 
using the Mahalanobis distance [4] revealed that these points lie significantly outside the training data 
distribution. This evaluation clarified that such out-of-distribution points are inherently difficult to predict, 
providing valuable insights into the limitations of extrapolative predictability. 

This study demonstrates that the multi-fidelity data fusion approach improves the extrapolative 
predictability of plasma turbulent transport using a magnetic fusion experimental dataset. By integrating 
theoretical, simulation, and experimental data, this approach provides a foundation for enhancing the accuracy 
of transport models essential for the design of next-generation fusion devices. 
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Figure 2. Extrapolative prediction for turbulent diffusion 
coefficient from JET experimental dataset. Comparison of 
predicted and actual values for (a) single GP and (b) NARGP 
prediction. The blue daggers denote the training data, and the 
orange circles denote the test data used for validation. The red 
cross dots in (b) are the test data far from the training data in 
parameter space, measured by using Mahalanobis distance. 




