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With closure terms, 64*64 simulation is as accurate 
as 512*512, saving >10x resources3

• Candidate LES (large-eddy simulation) terms proposed 
by DIA4 (direct interaction approximation).

• Coefficients identified by ConvLSTM5+PINN.
• Flux and spectrum as good as fine-grid simulations.

Conclusion: Two neural network–based reduced models were introduced for plasma turbulence, addressing sub-grid closure 
and turbulence–zonal flow dynamics. Highlight the potential of machine learning in constructing reduced turbulence models.

Future work: extend these methods to more complicated fluid or gyrokinetic systems.
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First direct identification of the governing equation 
of turbulence-zonal flow interaction from data6

• Modified HW, 𝜙 − 𝑛 →
( ෨𝜙 − ෤𝑛), stronger zonal flow

• Can one get from simulation 
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YES, but only with the stochasticity of turbulence.

Normal predator-prey7

 𝑑𝐸

𝑑𝑡
= 𝛼𝐸 − 𝛽𝐸𝑈

𝑑𝑈

𝑑𝑡
= −𝛾𝑈 + 𝜎𝐸𝑈

X Dynamics too simple
X No randomness
X Directly use e.g. SINDY    

gives unmeaningful results.
 

Stochastic predator-prey with NN8

 𝑑𝐸 = 𝑔11 𝐸, 𝑈 𝑑𝑡 + 𝑔21 𝐸, 𝑈 𝑑𝑤
𝑑𝑈 = 𝑔12 𝐸, 𝑈 𝑑𝑡 + 𝑔22 𝐸, 𝑈 𝑑𝑤

NN functions: 𝑔11, 𝑔12, 𝑔21, 𝑔22
Brownian motions: 𝑑𝑤
✓ More general dynamics
✓ With randomness of turbulence
✓ Good statistical match with data,
 can reproduce similar curves
 

Best result with assumptions:

Recovers: 1. Turbulence 
suppression due to zonal flow
2. Effect reduces at high flow
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Background and Motivation: 
• Plasma turbulence plays a central role in transport. 
• Direct numerical simulations remain expensive.
• Closure models/reduced models needed.
• Machine learning, particularly physics-informed neural 

networks (PINNs) provides promising tools for this task

Physical model: 2D Hasegawa-Wakatani (HW)1

Radial:x, Poloidal: y, Density: 𝑛, Potential: 𝜙, Vorticity 𝜔 = ∇2𝜙, Poisson bracket: {}, Adiabatic parameter 
(conductivity): 𝛼, (hyper)viscosity: D, Zonal flow damping: 𝜈, Equilibrium density gradient length 𝜅

Simulation with the TOKAM2D2 code (GPU-enabled)
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