

Neural Network Reduced Models for Plasma Turbulence

Z.S. Qu, K.P. Li, J.C. Huang, Y.W. Cho, X. Garbet, R. Varennes, C.G. Wan, R.C. Zhang, A. Shaa, C. Guet, K. Lim, D. Niyato, Y.S. Ong, V. Grandgirard

Background and Motivation:

- Plasma turbulence plays a central role in transport.
- Direct numerical simulations remain expensive.
- Closure models/reduced models needed.
- Machine learning, particularly physics-informed networks (PINNs) provides promising tools for this task

Physical model: 2D Hasegawa-Wakatani (HW)¹

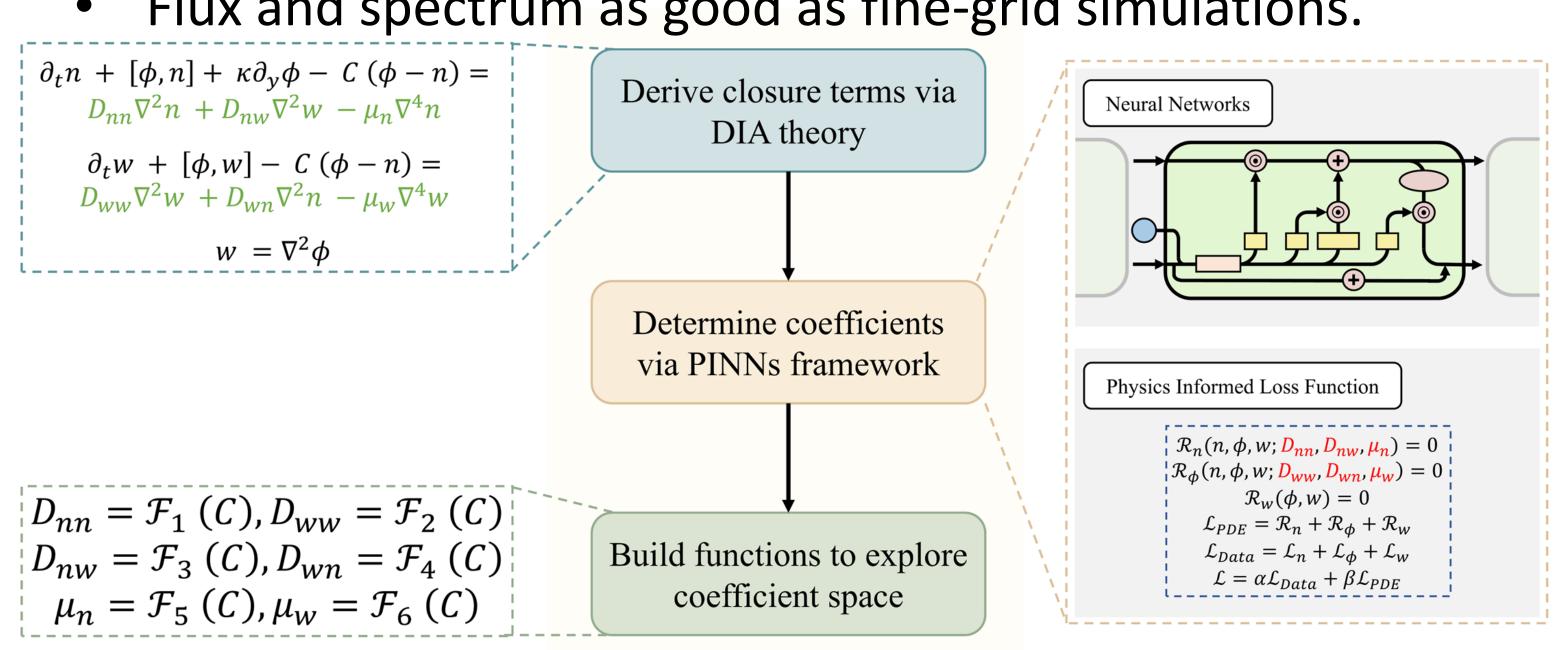
$$\frac{\partial \omega}{\partial t} + \{\phi, \omega\} = \alpha(\phi - n) - D\nabla^4 \omega - \nu \langle \omega \rangle_y,$$

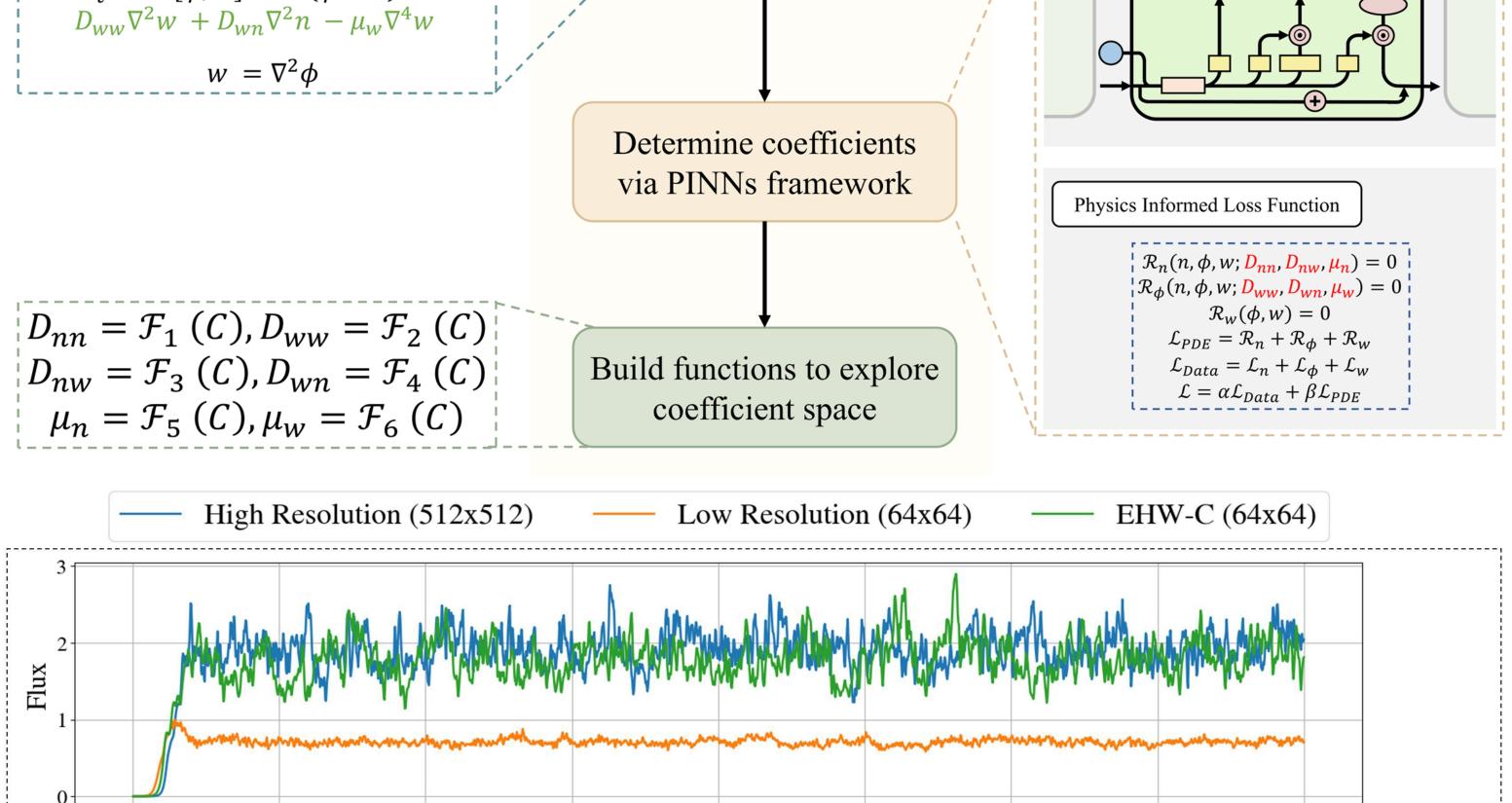
$$\frac{\partial n}{\partial t} + \{\phi, n\} = \alpha(\phi - n) - \kappa \frac{\partial \phi}{\partial y} - D\nabla^4 n,$$

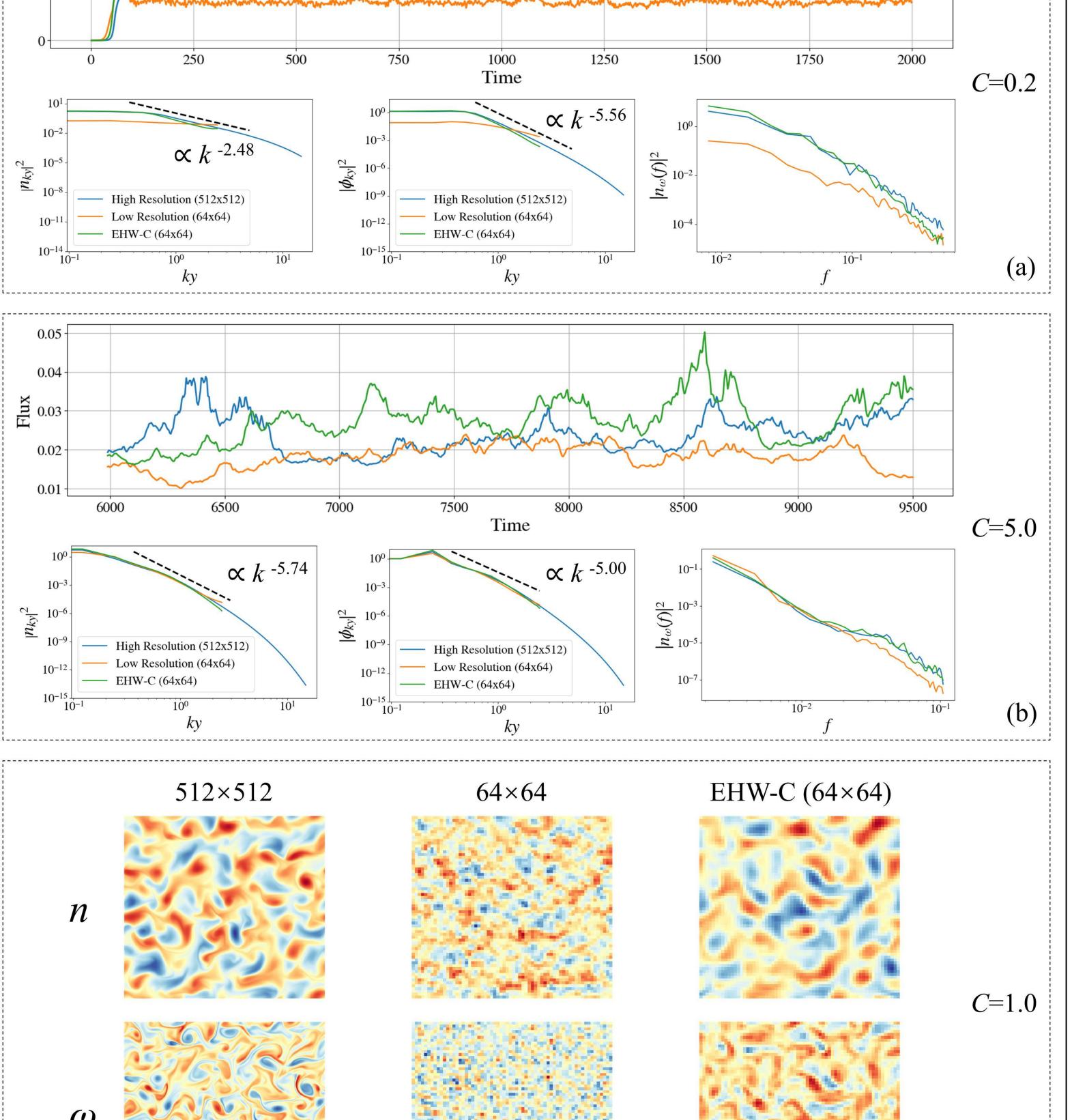
Radial:x, Poloidal: y, Density: n, Potential: ϕ , Vorticity $\omega = \nabla^2 \phi$, Poisson bracket: {}, Adiabatic parameter (conductivity): α , (hyper)viscosity: D, Zonal flow damping: ν , Equilibrium density gradient length κ Simulation with the TOKAM2D² code (GPU-enabled)

With closure terms, 64*64 simulation is as accurate as 512*512, saving >10x resources³

- Candidate LES (large-eddy simulation) terms proposed by DIA⁴ (direct interaction approximation).
- Coefficients identified by ConvLSTM⁵+PINN.
- Flux and spectrum as good as fine-grid simulations.







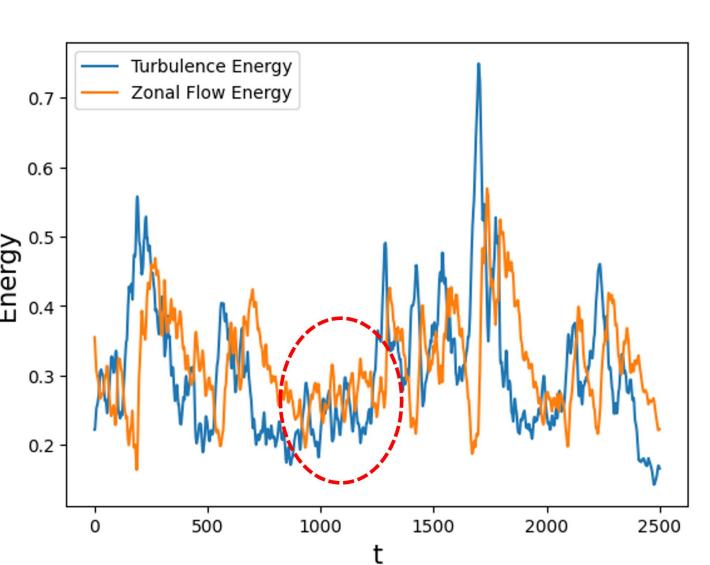
First direct identification of the governing equation of turbulence-zonal flow interaction from data⁶

Modified HW, $(\phi - n) \rightarrow$ $(\dot{\phi} - \tilde{n})$, stronger zonal flow

$$\tilde{\phi} = \phi - \langle \phi \rangle_y, \quad \tilde{n} = n - \langle n \rangle_y.$$

Can one get from simulation data $\frac{dE}{dt} = ?, \frac{dU}{dt} = ?$

Turbulence energy E, zonal flow energy U



YES, but only with the stochasticity of turbulence.

Normal predator-prey⁷

$$\frac{dE}{dt} = \alpha E - \beta EU$$

$$\frac{dU}{dt} = -\gamma U + \sigma EU$$

- X Dynamics too simple
- X No randomness
- X Directly use e.g. SINDY gives unmeaningful results.

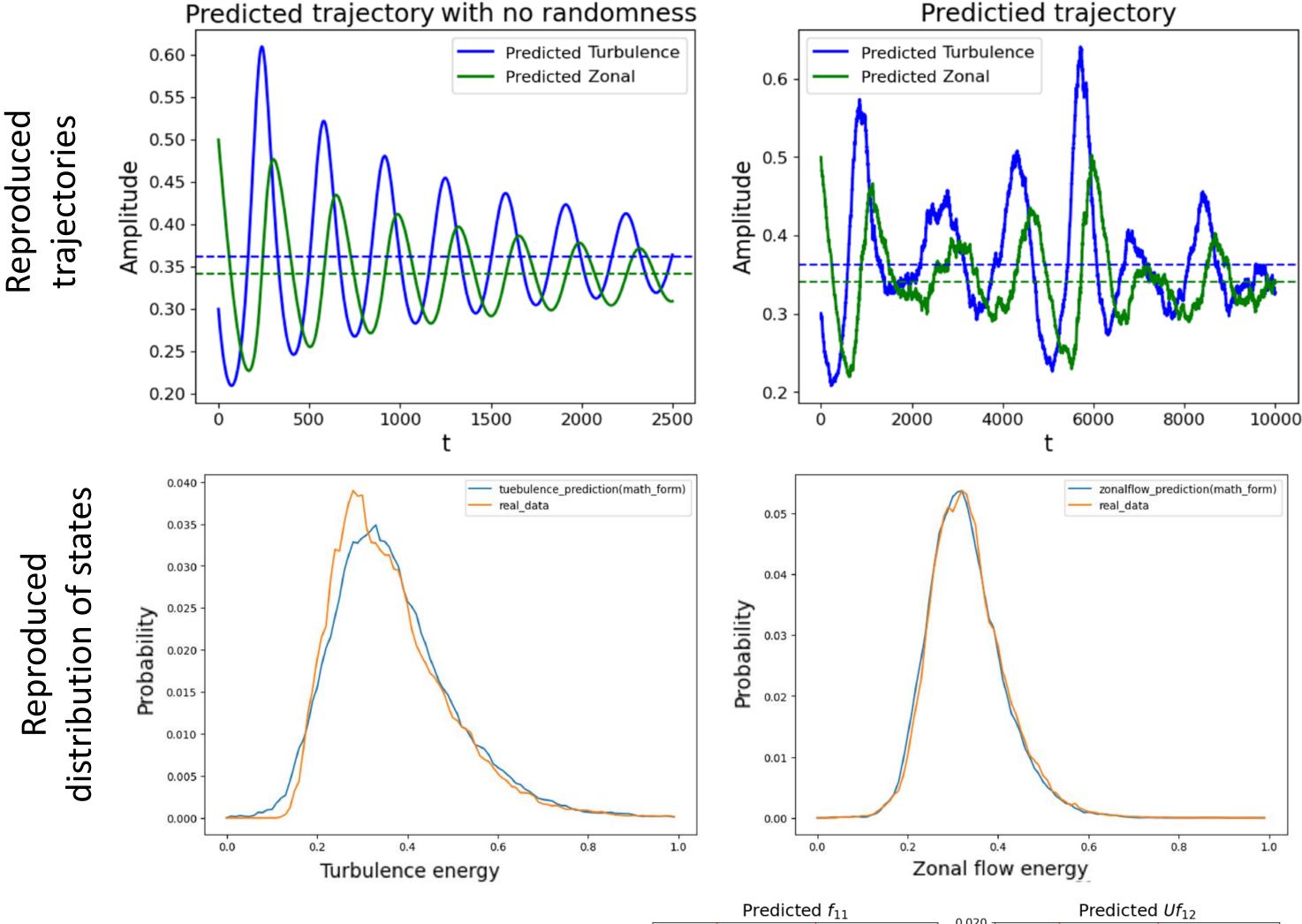
Stochastic predator-prey with NN⁸

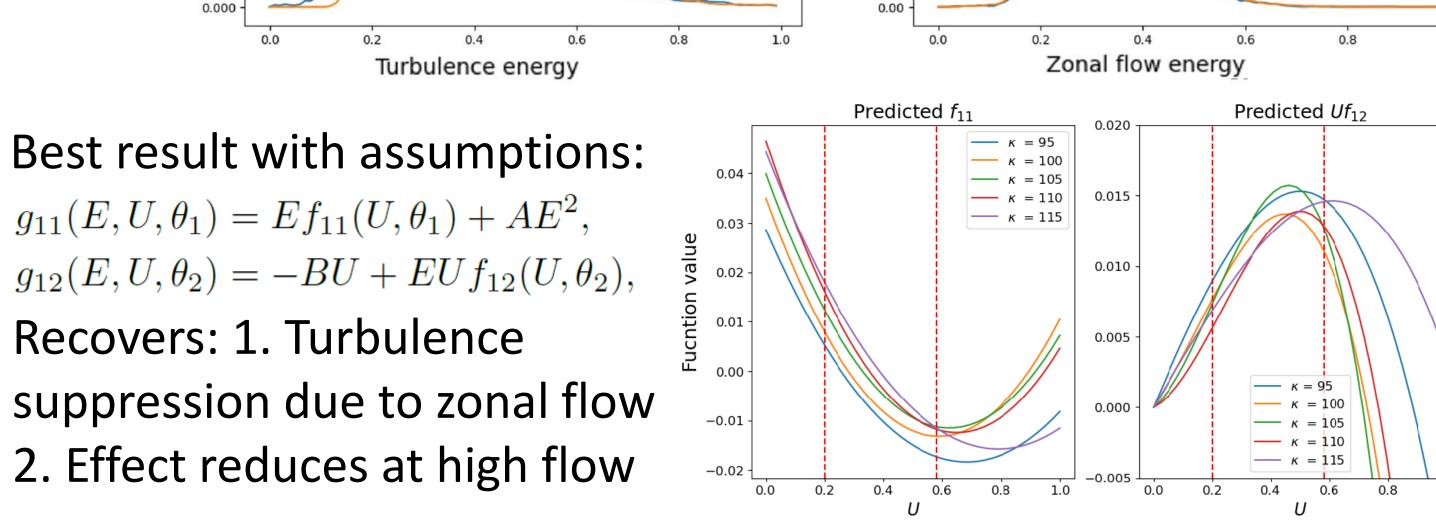
 $dE = g_{11}(E, U)dt + g_{21}(E, U)dw$ $dU = g_{12}(E, U)dt + g_{22}(E, U)dw$ NN functions: g_{11} , g_{12} , g_{21} , g_{22}

Brownian motions: dw

✓ More general dynamics

- √ With randomness of turbulence
- √ Good statistical match with data, can reproduce similar curves





Conclusion: Two neural network-based reduced models were introduced for plasma turbulence, addressing sub-grid closure and turbulence—zonal flow dynamics. Highlight the potential of machine learning in constructing reduced turbulence models. Future work: extend these methods to more complicated fluid or gyrokinetic systems.

(c)

Acknowledgements: National Research Foundation Singapore (NRF), National Supercomputing Centre (NSCC) Singapore, Ministry of Education (MOE)

[7] P. H. Diamond, S.-I. Itoh, K. Itoh, T. S. Hahm, Plasma Physics and Controlled Fusion 47, R35 (2005). [8] E.-j. Kim, R. Hollerbach, Phys. Rev. Res. 2, 023077 (2020).