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1. INTRODUCTION 

In magnetic fusion plasmas, turbulence transport primarily determines plasma confinement time and, ultimately, 
fusion yield. Understanding and predicting turbulence fluxes is crucial for the success of fusion energy. 
Traditionally, this challenge has been addressed through computationally expensive numerical simulations.  

In this synopsis, we leverage recent advances in neural networks (NNs) to develop data-driven closure and 
surrogate models. Our NN-based large-eddy closure model accurately recovers the turbulence spectrum and flux 
while requiring only 1/8 of the resolution in each direction, leading to a speed-up of at least a factor of 10. 
Meanwhile, our NN-based surrogate model successfully captures the complex interplay between turbulence and 
zonal flows, even in the presence of strong stochasticity. 

2. LARGE EDDY SIMULATIONS OF DRIFT WAVE TURBULENCE 

Closure models are commonly employed in Large Eddy Simulations (LES) of hydrodynamic turbulence. This 
strategy has been much less utilized in plasma turbulence. The objective of this work is to leverage recent 
developments in machine learning to identify relevant closure models for the 2D 2-field Hasegawa-Wakatani 
model [1], a minimal system with turbulent transport. Under reasonable assumptions, the Direct Interaction 
Approximation (DIA) theory [2] predicts a closure model with 6 diffusion and hyperdiffusion coefficients, which 
couple density and vorticity equations. These 6 coefficients are identified by a physics-informed neural operator 
approach. Training of the neural network is performed with data from highly resolved spectral Direct Numerical 
Simulations (DNS). 

This model has been tested on low resolution LES simulations on a 64*64 grid, which were compared to DNS 
highly resolved data with a 512*512 grid. Agreement is found satisfactory for a large set of input parameters 
(adiabaticity coefficient, and density gradient), as demonstrated in Figure 1, while directly reducing the resolution 
to 64*64 in DNS leads to discrepancies. Quite interestingly, it appears that viscosity is negative and hyperviscosity 
positive, in accordance with an old prediction from Kraichnan [3] for eddy viscosity in 2D turbulence. In addition, 
cross-terms, i.e. density diffusion in vorticity equation, and vorticity diffusion in continuity equation, are found to 
be significant, in agreement with DIA theory. 

Machine learning (64x64) 

Figure 1 (Left) The volume averaged particle flux as a function of time for high resolution DNS, low resolution 
DNS, and low-resolution LES with parameters identified by machine learning. (Right) The spectrum of 
electrostatic potential as a function of azimuthal wave number 𝑘! for the three different cases. 
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3. STOCHASTIC SURROGATE MODEL FOR THE TURBULENCE-ZONAL FLOW DYNAMICS 

The predator-prey model of turbulence and zonal flows [4] is simple but efficient. Although features of such a 
model can be qualitatively identified from the phase lag between the turbulence energy and zonal flow energy, 
the direct extraction of model parameters from data is complicated. The interplay is stochastic, as turbulence itself 
is inherently random and nonlinear. An example from a DNS simulation of the modified Hasegawa-Wakatani 
model is shown in Figure 2. 

We propose to construct a neural-network stochastic differential equation (NN-SDE) from data, which takes the 
form 

𝑑𝐸" = 𝑔##(𝐸" , 𝐸$)𝑑𝑡 + 𝑔%#(𝐸" , 𝐸$)𝑑𝑊,
𝑑𝐸$ = 𝑔#%(𝐸" , 𝐸$)𝑑𝑡 + 𝑔%%(𝐸" , 𝐸$)𝑑𝑊,

 

	
where 𝐸" and 𝐸& are turbulence and zonal flow energy, respectively. The 𝑔 functions are neural networks, and 
𝑑𝑊 is a Gaussian white noise. We managed to learn the 𝑔 functions from a number of DNS for the same condition 
but with different random seeds. An example of the reconstructed predator-prey trajectory is presented in Figure 
2, showing similar features to DNS including the stochastic dynamics. The histogram of 𝐸" and 𝐸& is also in good 
agreement with data. 

4. CONCLUSION 

In this work, we have demonstrated the effectiveness of neural network reduced models for plasma turbulence 
transport. Our approach successfully integrates machine learning techniques with physics-based models to 
enhance the efficiency and accuracy of turbulence simulations. The neural-network-based closure model 
significantly reduces computational costs while maintaining high-fidelity predictions of turbulence flux and 
spectra. Additionally, our stochastic surrogate model effectively captures the intricate dynamics of turbulence-
zonal flow interactions, reinforcing the utility of data-driven methods in plasma physics. 
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Figure 2 (Left) Turbulence and zonal flow energy from DNS. (Right) Reconstruction from the NN-SDE. 


