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Introduction
Present-day tokamaks rely on equilibrium reconstruction codes that fit 
magnetic measurements to solutions of the Grad–Shafranov equation. 
While effective today, this approach may face limitations in future fusion 
power plants, where diagnostic access is restricted by shielding and 
larger machine size increases computational demands. Machine learning 
(ML) offers a path forward by enabling fast, data-driven plasma 
boundary reconstruction without depending on full diagnostic coverage. 
In this work, we focus on reconstructing the last closed flux surface using 
reduced magnetic datasets, demonstrating that surrogate models can 
provide accurate, real-time boundary estimates and robust fallback 
options when diagnostics are limited or degraded.

A total of 5 NN models trained on various input feature sets are 
considered:

1. [IPF-coil] — least informed model
2. [IPF-coil] + Ip + Vloop
3. [IPF-coil] + Ip + [ψ-loops]
4. [IPF-coil] + Ip + [Bp-probes]
5. [IPF-coil] + Ip + [Bp-probes] + [ψ-loops] — baseline model
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● Output: vector of size Nc = 2·Np = 180, where Np = 90 points describe 
the boundary.

● Dataset: matrix (N, D+Nc), standardized inputs and outputs.
● Architecture: FCNN with 2 hidden layers (150, 80 neurons), ReLU 

activations, batch normalization.
● Training: Mean Squared Error (MSE) loss, Adam optimizer (lr = 1×10⁻⁴).
● Cross-validation: plasma shapes grouped by triangularity → 12 sets. 

Shape-balanced splits → ~80/10/10 train/val/test.
● Final evaluation: additional test set (2024–2025 discharges), balanced 

to ~70/10/20.

more about these two models in 
Stokolesov et.al. JoPP 2025 
(accepted)



Dataset
Historical DIII-D EFIT data from 
2020-2025 includes shots with pulse 
length >2 seconds

Shots filtered to have common magnetic 
diagnostics across whole dataset

Rampup, flattop, and rampdown phases 
are included with 20 ms timestep.

NT and PT cases included

Results in >7000 shots and >1.8 million 
timesteps in total

ML models comparison

Model

Cross validation Test

MND MXD mean R2 MND MXD mean R2

1 0.026 0.095 0.384 0.030 0.099 0.785

2 0.024 0.095 0.441 0.027 0.091 0.816

3 0.018 0.087 0.647 0.019 0.081 0.910

4 0.018 0.089 0.633 0.018 0.074 0.910

5 0.017 0.086 0.689 0.016 0.069 0.930

More information is better. 
The most pronounced 
deviations are located in 
X-point regions.
Adding more information 
improves MND more than 
MXD
~6cm/~20cm (MND/MXD) is 
achievable in the least 
informed model #1

Conclusion
Surrogate ML models allow achieving good accuracy in plasma position and 
tolerable performance in plasma boundary reconstruction in midplane area 
while operating with fewer diagnostic inputs. The most difficult zone for 
applied methods are X-point areas. Beyond serving as lightweight surrogates 
for equilibrium solvers, these models can also play a supporting role in plasma 
control by providing early warnings of off-normal behavior.
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