EFFECT OF PFIRSCH-SCHLÜTER FLOW ON TOROIDAL FLOW IN THE EDGE REGION OF ADITYA-U TOKAMAK

^{1,2}ANKIT KUMAR, ^{1,2}JOYDEEP GHOSH, ¹M. B. CHOWDHURI, ¹AMAN GAUTTAM, ³DIPEXA MODI, ¹NILAM RAMAIYA, ¹UTSAV, ⁴KAJAL SHAH, ⁵N. YADAVA, ^{1,2}KAUSHLENDER SINGH, ^{1,2}SUMAN DOLUI, ^{1,2}BHARAT HEDGE, ^{1,2}ASHOK KUMAWAT, ^{1,2}SOUMITRA BANERJEE, ^{1,2}INJAMUL HOQUE, ^{1,2}KOMAL, ¹ROHIT KUMAR, ^{1,2}SUMAN AICH, ¹HARSHITA RAJ, ¹PRAMILA GAUTTAM, ⁶TANMAY MACWAN, ⁷S. PATEL, ¹G. SHUKLA, ¹K. A. JADEJA, ¹ANKIT PATEL, ¹K. M. PATEL, ¹PRIYANKA VERMA, ¹MINSHA SHAH, ¹KALPESH GALODIYA, ¹R.L. TANNA

¹Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India

²HBNI, Training School Complex, Anushakti Nagar, Mumbai, India

³Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India

⁴Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

⁵Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA

⁶Physics and Astronomy Department, University of California, Los Angeles, California 90098, USA

⁷Department of Physics, University of Virginia, Charlottesville, USA,

Email: Ankit1007kr@gmail.com

Simultaneous measurements of intrinsic toroidal (v_{ϕ}) and poloidal rotation (v_{θ}) from the Doppler's shift of C²⁺ ions (at 464.74nm) has been performed to reveal the underlying physical mechanism behind these self-generated flows observed in ADITYA-U tokamak. In the previous study [1], it was found that the edge V_{ϕ} of C⁵⁺ ions (at 529nm) in ADITYA-U is driven by $E_r \times B_{\theta}$ drift, which damps from ~ +7km/s (co-current) to almost zero velocity on increasing the edge electron density (n_e). In the recent study (done with C²⁺ ions), similar behavior of edge V_{ϕ} damping is observed with increasing edge n_e. Interestingly, further increment in the edge density triggered the edge rotation reversal, making the flow in counter-current direction (with a velocity of ~ -6km/s). Apart from V_{ϕ} , direction reversal of edge poloidal rotation V_{θ} is also observed with the edge n_e. In order to understand the fundamental nature of these self-generated flows (intrinsic $V_{\phi} \& V_{\theta}$) in ADITYA-U, the direction of plasma current (I_P) as well as of toroidal magnetic field (B_T) are deliberately reversed in one of the scenario-2 consist of the discharges taken after reversing: I_P and B_T (both simultaneously), such that I_P and B_T becomes anti-clockwise and clockwise respectively (when seen from top). The experimental setup for measuring toroidal and poloidal rotation is well explained in references [1-3].

For both: scenario-1 & 2 discharges, theoretical values of edge rotation V_{ϕ} is calculated and compared with the experimental values. Residual stress, a well known candidate for generating V_{ϕ} can produce a co-current edge

 V_{ϕ} of ~ 3-4 km/s in ADITYA-U, which matches quite well with the experimental values in the low edge density range. Another theoretical model, given by Hirshman and Sigmar (neo-classical approach) predicts an co-current edge V_{ϕ} of ~ 4-5 km/s, which again matches quite well with the experimental values in the low edge density regime. However, in the high edge density regime, the experimental edge V_{ϕ} becomes counter-current in both the scenarios, resulting in a mismatch with the theoretical values (in term of sign).

Apart from the residual stress, the radial electric field can also generate intrinsic toroidal rotation in a tokamak. The E_r required to produce the toroidal rotation (when poloidal rotation and diamagnetic drift contributions are negligible) is given by the following equation:

$$V_{\phi} = E_r / B_{\theta} \qquad (1)$$

Since, all the plasma parameters (except the direction of I_P and B_T) are kept constant in both the scenarios, the E_r must remain unaltered during both scenarios. So, with the help of equation-1, the flip observed in V_{ϕ} profile (in figure 2) can be understood from the directional change of B_{θ} (caused by reversing I_P direction in scenario-2). In figure-2, chord weighted V_{ϕ} profile for two discharges, each from both scenarios are shown. It can be clearly seen that the direction of V_{ϕ} (in tokamak frame of reference) flipped its sign while $I_P \& B_T$ configuration is switched from scenario-1 to scenario-2. This indicates that the residual stress is not driving the intrinsic toroidal rotation in ADITYA-U, otherwise this flip, shown in figure-2, would not have been observed. The overall intrinsic toroidal rotation in ADITYA-U is so driven mainly by the $E_r \times B_{\theta}$ drift only. However, the magnitude of edge V_{ϕ} generated by the residual stress matches well with the experimental values (in the low edge n_e regime). Similarly, the Hirshman and Sigmar approach also suggests a very good agreement with the observed V_{ϕ} (at low edge density) in both the scenarios, but it again also fails to explain the observed counter-current rotation in both scenarios. In figure 3, edge V_{ϕ} is plotted in the two scenarios w.r.t brightness value (brightness is a spectroscopic measurement which varies linearly with the edge density).

Apart from the V_{ϕ} , edge V_{θ} is also observed to reverse its direction with an increase in the edge density. Figure 4 exhibits the V_{θ} flipping its sign during scenario change, which again suggests the key role $E_r \times B_{\theta}$ drift, along with the Pfirsch-Schlüter flow in driving the edge poloidal rotation in ADITYA-U tokamak. This flipping in the direction of poloidal rotation is caused due to the fact that reversing the toroidal magnetic field B_T from scenario 1 to 2, causes a directional change in grad-B drift. As a result, the direction of Pfirsch-Schlüter flow (due to the charge separation) along with the $E_r \times B_{\phi}$ flow gets reversed, which ultimately reverses the direction of poloidal rotation of ADITYA-U tokamak. Both the toroidal and poloidal flows in ADITYA-U are affected by Pfirsch-Schlüter flows.

REFERENCES

[1] Ankit Kumar et al 2024 Nucl. Fusion 64 086019

[2] Shukla G et al 2021 Rev. Sci. Instrum. 92 063517

[3] Shukla G et al 2019 Atoms 7 93