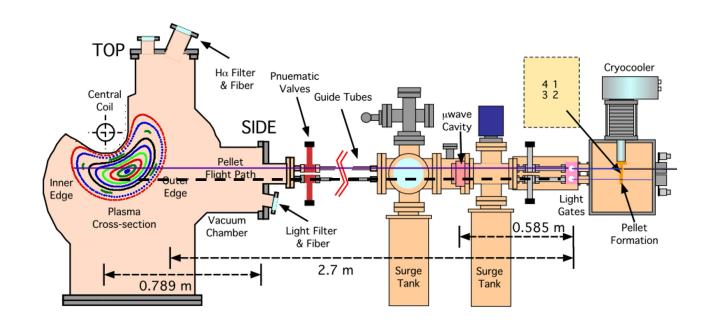
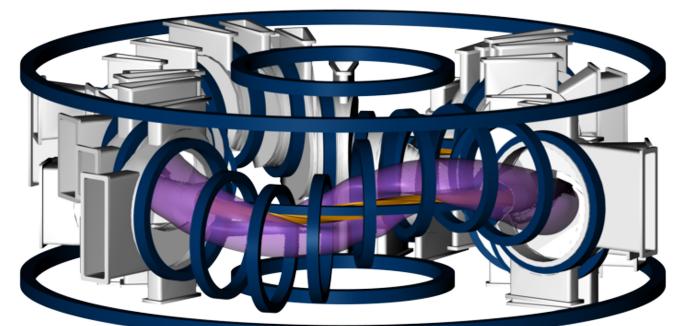
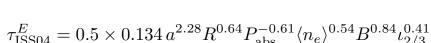
Confinement Modelling Of Enhanced Plasma Performance After Multiple Pellet Injections In The TJ-II Stellarator

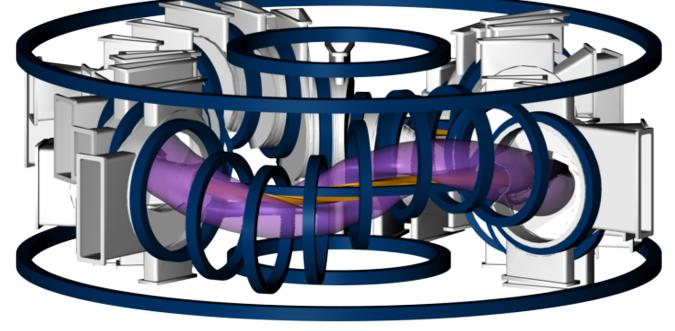
V. Tribaldos¹, I. García-Cortés², K.J. McCarthy², J.M. Reynolds-Barredo¹, B. van Milligen², A. Baciero², R, Carrasco², O.O. Chmyga³, T. Estrada², J.M. Fontdecaba², O.S. Kozachek³, D. López-Bruna², F. Medina², D. Medina-Roque², J.L. de Pablos², N. Panadero², I. Pastor², J. de la Riva², M.C. Rodriguez², and the TJ-II Team

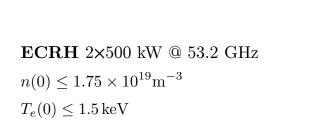
1 Universidad Carlos III de Madrid, Spain, 2 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain, 3 Institute of Plasma Physics, NSC KIPT Kharkiv, Ukraine

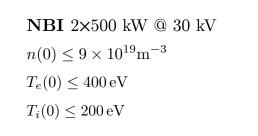

Universidad Carlos III de Madrid

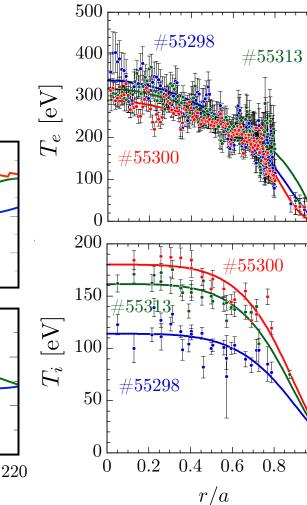


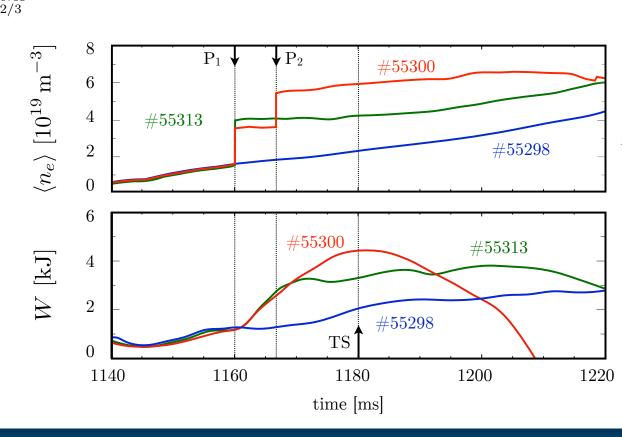

Experimental Facts

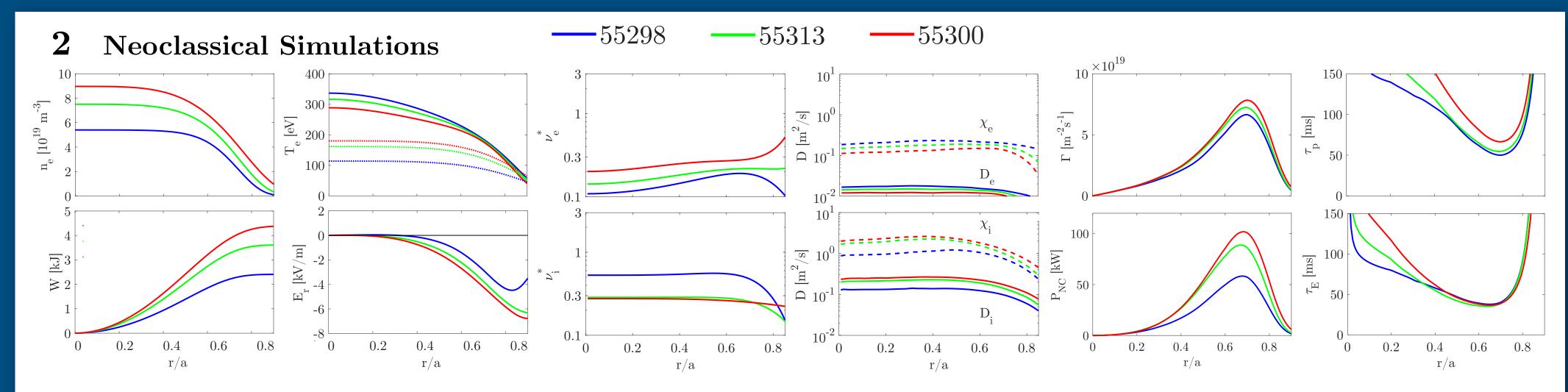

Recent experimental campaigns on the TJ-II stellarator have investigated the effects of multiple cryogenic hydrogen pellet injections into neutral beam injection (NBI)-heated plasmas [1,2], expanding on earlier studies focused on ablation, deposition, and fueling efficiency. The plasmas generated through multiple pellet injections exhibit sustained record central densities, ion temperatures and diamagnetic energy confinement times exceeding ISS04 [3]. While a significant decrease in density and electrostatic potential fluctuations in the outer plasma region indicates a turbulent transport contribution [4], the more negative values of the radial electric field also point toward a neoclassical transport channel.

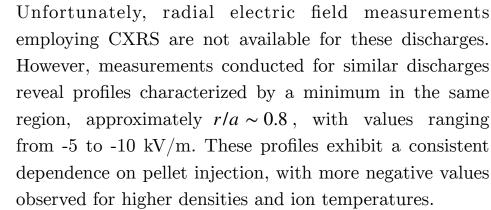



Pellet sizes 2.4×10^{19} , 1.4×10^{19} , 8×10^{18} , 5×10^{18} H atoms $v_p = 710$ m/s

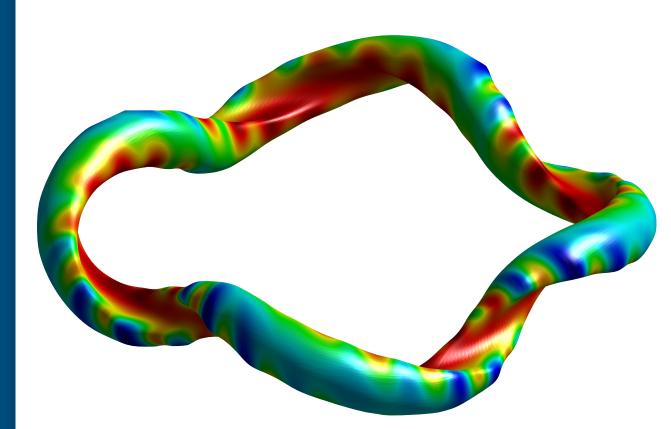


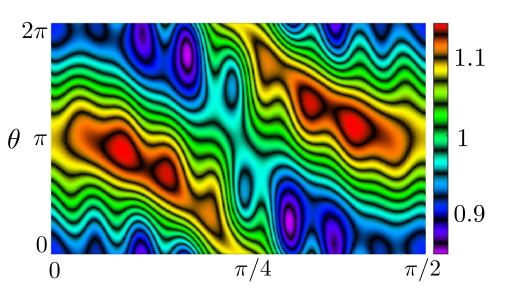


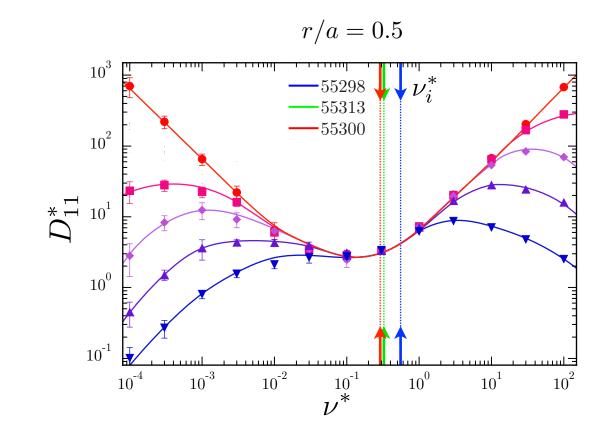




3 Pellets 2 Pellets 1 Pellet
No Pellets
0 4 8 12 16
0 4 8 12 16 τ _{ISS04} (ms)




Shot	$W_{ m diag}[{ m kJ}]$	$ au_{ m E}^{ m exp}[{ m ms}]$	$ au_{ m E}^{ m ISS04} [m ms]$	$ au_{ m E}^{ m NC}[m ms]$	$ au_{ m p}^{ m NC} [m ms]$	$I_b[\mathrm{kA}]$	$I_p[\mathrm{kA}]$	$I_{NBI} + I_b[kA]$
#55298	2.4	10.2	7.5	38	50	0.6	-1.5	-1.5
#55313	3.6	13.3	11.3	35	54	1.0	-1.2	-1.1
#55300	4.4	13.8	12.6	36	66	1.2	-0.8	-0.9


$$\tau_{\rm p}(r) = \frac{4\pi^2 R \int_0^r n_e(r') r' dr'}{4\pi^2 r R \Gamma(r)} \qquad \tau_{\rm E}(r) = \frac{4\pi^2 R \int_0^r \frac{3}{2} [n_i(r') T_i(r') + n_e(r') T_e(r')] r' dr'}{4\pi^2 r R [Q_e(r) + Q_i(r)]}$$

For counter-NBI heating the measured total plasma current I_p includes both bootstrap and NBI-driven components. By subtracting the neoclassical bootstrap current estimate I_b from the measured I_p of the reference discharge #55298, an NBI current $I_{\text{NBI}} = I_p - I_b = -2.1 \text{ kA}$ was estimated. Assuming $I_{\rm NBI}$ remains constant across all discharges -a significant assumption- this calculation yields results consistent with the experimentally measured current, exhibiting a discrepancy of only 0.1 kA ($\approx 10\%$).

Neoclassical Transport in TJ-II

$$D_n^{\alpha} = \frac{\sqrt{\pi}}{8} \frac{\rho^2 v_{\alpha}^{th}}{R \iota} \int_0^{\infty} dK_{\alpha} e^{-K_{\alpha}} K_{\alpha}^{n-1/2} D_{11}^* \left(\frac{r}{a}, \frac{\nu_{\alpha}}{v_{\alpha}}, \frac{E_r}{v_{\alpha}B} \right)$$

$$\Gamma_{\alpha} = -n_{\alpha} D_1^{\alpha} \left\{ \left(\frac{n_{\alpha}'}{n_{\alpha}} - \frac{Z_{\alpha} E_r}{T_{\alpha}} \right) + \left(\frac{D_2^{\alpha}}{D_1^{\alpha}} - \frac{3}{2} \right) \frac{T_{\alpha}'}{T_{\alpha}} \right\}$$

$$n = 1, 2, 3$$

$$Q_{\alpha} = -n_{\alpha} T_{\alpha} D_{2}^{\alpha} \left\{ \left(\frac{n_{\alpha}'}{n_{\alpha}} - \frac{Z_{\alpha} E_{r}}{T_{\alpha}} \right) + \left(\frac{D_{3}^{\alpha}}{D_{2}^{\alpha}} - \frac{3}{2} \right) \frac{T_{\alpha}'}{T_{\alpha}} \right\} \qquad K_{\alpha} = \frac{m_{\alpha} v_{\alpha}^{2}}{2T_{\alpha}}$$

The neoclassical local particle Γ_{α} and energy Q_{α} fluxes and the bootstrap current densities J_{α} are calculated using the monoenergetic approach [5] with a combination of codes [6,7] for the experimental configuration 100 44 64,

In the experimental and neoclassical results the energy confinement time does not vary significantly between discharges, despite the plasma energy nearly doubling and the ion temperature increasing by 50%. In the neoclassical simulations the energy doubles, the energy fluxes double, and consequently, the confinement time must be roughly the same. The transition between the onset of the Pfirsch-Schlüter and the plateau regime is the responsible for the mild dependence..

An enhanced confinement regime is induced by multi-pellet injection in NBI-heated plasmas at TJ-II. A systematic comparison between experimental measurements and simulations, including turbulent, neoclassical and ASTRA [8] models, is currently underway to quantify the contribution of these transport channels.

Acknowledgements

This research was partially financed by grants PID2022-137869OB-I00, PID2020-116599RB-I00 and PID2023-148697OB-I00 funded by MICIN/AEI/10.13039/501100011033, by "ERDF A way of Making Europe", and by the European Union through the Euratom Research and Training Programme (Grant Agreement No 101052200 -EUROfusion). The views and opinions expressed herein are solely those of the author(s) and do not necessarily reflect those of the European Union or the European Commission, which can hold no responsibility for them.

References

[1] I. García-Cortés et al. Phys. Plasmas **30**, 072506 (2023) [3] H. Yamada et al. Nucl. Fusion **45** 1684 (2005) [5] C.D.Beidler *et al.*, Nucl. Fusion **51** 076001 (2011)

[7] V. Tribaldos Phys. Plasmas 18 102507 (2011)

[2] K.J. McCarthy *et al.* Nucl. Fusion **64** 066019 (2024) [4] J.M. García-Regaña, IAEA-CN-316-2902 (2025) [6] H. Maassberg et al. Phys. Plasmas 16 072504 (2009) [8] G.V. Pereverzev *et al.* IPP-Report 5/98 (2002)