
WORKFLOW

CHALLENGES

•Green’s function of linearized HM equation is too complicated.

•Motion of voids has both radial and poloidal components.

SCHEME

•Seek only local solutions of three limiting cases.
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•Cherenkov “radiation” of drift waves from inward-moving density voids

drives substantial inward turbulence spreading and leads to the formation

of the edge-core coupling region, i.e., no man’s land (NML).

•Void-induced turbulence is regulated by a self-generated zonal flow. This

qualitatively explains the observed zonal flow power bursts following the

detection of voids in experiments.

•By incorporating voids into plasma turbulence dynamics, we develop a

first-principles model that resolves several questions surrounding the

shortfall problem and the dynamics of edge-core coupling.

ABSTRACT CHALLENGES & SCHEME

•Coherent structures exist in fusion plasmas as blobs and voids—plasma

filaments with large amplitude +/- density fluctuations.

•Existing theories on blobs/voids are incomplete since: (1) no interactions

of structures with waves and zonal flow; (2) millions of papers on blobs,

far less attention to voids.

•Recent experiments indicate: (1) blobs and voids are created in pairs from

edge gradient relaxation events (GREs) close to LCFS; (2) while blobs move

outward into SOL, voids move inward, staying in bulk plasma (messenger

from edge to core); (3) inward moving voids could drive zonal flow.

•In edge-core coupling region: Fickian gyrokinetic simulations sometimes

underpredict the turbulence level (shortfall problem) ⇒ Maybe the excess

turbulence is spread from the edge? ⇒ the tails wags the dog

•Inward-moving voids could play an important role in plasma turbulence

dynamics and address the shortfall problem⇒ need a model.

BACKGROUND & MOTIVATION

BASIC IDEA: CHERENKOV RADIATION + DRESSED TEST PARTICLE MODEL

Moving charged particles emit EM waves ⇔ moving voids also emit waves

From experiments: 𝑢𝑣 ∼ 𝑣∗ ⇒ inward-moving voids radiate drift waves.
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PARTITION OF THE SPACE:

Near field: close to the void, 𝛼 < 1 (density mixing ✓) ⇒ Two-field model

Far field: far from the void, 𝛼 > 1 (drift wave) ⇒ Hasegawa-Mima (HM) eqn

Focus: far field ⇒ void enters via profile modulation: 𝑛 = 𝑛0 + 𝑛𝑣 + ෤𝑛
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MODEL DEVELOPMENT

•Voids, drift waves, and zonal flow constitute a new feedback loop that

goes well beyond the traditional drift wave–zonal flow paradigm.

•How the tail wags the dog: emission of drift waves from inward-moving

voids drives substantial inward turbulence spreading.

•Model applies not only to L-mode but also provides insights into H-mode.

CONCLUSION
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Solve 𝜑 via Green’s 
func of linearized 
HM equation

Estimate void-
induced turbulence 
flux & NML width

Compute shearing 
rate of void-driven 
zonal flow
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Schematic of specific cases Void-induced turbulence flux 

VOID-INDUCED TURBULENCE INTENSITY FLUX 𝚪 & NML WIDTH 𝒘𝒏𝒎𝒍

•After each waiting time 𝜏𝑤, 𝑁 voids are emitted from GRES simultaneously.

•Γ is the superposition of the pulses contributed from each void ⇒
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•Balancing nonlocal turbulence spreading with local production ⇒
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•For 𝑁 ∼ 𝒪(1) (strong ballooning), 𝑤𝑛𝑚𝑙 ∼ 100 𝜌𝑠 for typical parameters.

SHEARING RATE OF VOID-DRIVEN ZONAL FLOW

ESTIMATE OF VOID LIFETIME: A DIFFUSIVE MODEL

•Turbulence and shear can smear/shear the void ⇒ constrain void lifetime.

•When magnitude decays by half, void is vanished ⇒ 𝜏𝑣 = 2Δ𝑥2/𝐷

•Predicted 𝜏𝑣 ranges from a few to 100 𝜇s, bracketing experimental results.

RESULTS
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Void lifetime as a function of mixing length
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