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ABSTRACT OUTCOME

eFor HCCB TBS during the ITER DT-1 scenario, heat release and tritium HEAT RELEASE

release within PC (Port Cell)#18 constitute critical safety parameters, o The heat release in PC#18 is much lower than the limit value 31kW.

determining compliance with thermal design requirements and the ~ « Eyen if electric heating is added, the heat release remains below 31 kW.
necessity of secondary confinement for the pipeline section. TRITIUM RELEASE

*This study employs TriSim — our in-house simulation tool. * The tritium concentrations in the PF and AEU <1 DAC, which meets the
To confirm the heat release and tritium release under the updated v2024

requirements of ITER.

baseline DT-1 scenario, heat release remains below 31 kW and tritium | During the 16-hour operation of DT-1, whether plasma implantation is

release maintains <1 DAC.

considered or not, its impact on tritium release is negligible

e Plasma-implanted tritium release to PC18 requires:
BACKGROUND _ P | 4
-Time of permeate into the HCS.

*|TER has established an updated baseline (v2024) to address emerging -Additional timescales for environmental release
technical challenges with 3 operational phases: SRO, DT-1, and DT-2. * Validation of implanted tritium permeation necessitates extended
eDuring the DT-1 operation, the fusion power will be adjusted to 250 MW computational duration.
with a flat-top duration of 300 s, executing 32 back-to-back pulses totaling
Heat release in PC#18 Heat release in PC#18 with electrical heater
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T _ 2 TES | -566.42 | -753.74 | -1320.16 | 0.13 The tritium concentration distribution in a certain section of the pipe wall in HCS

= _ + Tritium diffusion: CONCLUSION

2 2

= — = @ —— = 2
i N . | . N e The heat release remains within ITER-specified limits (<31 kW)

Transport of the diluted species (T/H):  Plasma implantation (Additions):

= _ + - _~o4 _—_ eTritium concentration confirm compliance with ITER requirements (<1
Source: e solid-fluid coupling models DAC) in the DT-1 scenario.
= = Convective heat transfer (Additions): eDuring 16-hour DT-1 operation, plasma implantation exhibits negligible
Isotope exchange (Additions): = - impact on tritium release, as implantation-induced concentration

2+ 2 Dissolution and Recommbination increases have not yet propagated to the outer surfaces of th HCS.

Decay: (Additions): e Tritium implantation from the plasma side may significantly influence

=— = - =2 -2 2

tritium release in PC18 in Long-term Operation.
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