TH-H

ENABLING REAL-TIME ICRF HEATING PREDICTIONS VIA AN AUTOMATED
SURROGATE MODEL GENERATOR SUITE

'A. Sanchez-Villar, ?Z. Bai, 'J. Berkery, 'N. Bertelli, °E. W. Bethel, *J. Hillairet, °T. Perciano, °G. Pyeon,
'S. Shiraiwa, °G. M. Wallace, and °J. C. Wright

"Princeton Plasma Physics Laboratory, Princeton, NJ 08540 Jersey, United States
’Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
3San Francisco State University, San Francisco, CA 94132, United States

“CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

SMIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States

Email: asvillar@pppl.gov

An Automated Surrogate Model Generator Suite has been developed to achieve accurate and real-time capable
predictions of 1D ion cyclotron range of frequencies (ICRF) heating. The suite is designed to provide an
effective streamlined workflow to train, optimize, save and deploy surrogate models, leveraging open-source
artificial intelligence and machine learning (AI/ML) frameworks such as PyTorch, TensorFlow, and Scikit-learn,
along with Bayesian optimization for hyperparameter tuning. This work advances our efforts towards the
development of a toolkit to deploy surrogate models which are effective for multiple scenarios. The suite is
tested to develop surrogates that predict ICRF heating profiles for NSTX, where our previous models were
trained and optimized using methodical scanning, randomized and gridded searches. The new methodology
improves surrogate accuracy while simplifying implementation through an end-to-end framework based on
various ML algorithms.

AI/ML methodologies present a potential opportunity to accelerate research in multiple areas relevant for fusion
energy sciences [1] such as disruption prediction and control [2], experimental analysis [3], enhanced
diagnostics [4], or model extraction and reduction via surrogate model development [5-7]. Surrogate models
enable overcoming the large computational expenses of conventional modeling codes. A recent example is their
application to accelerate predictions of radio-frequency heating and current drive, from the lower hybrid current
drive at EAST [5], to the more recently shown real-time capable predictions of the ICRF heating of multiple
plasma species for the high harmonic fast wave (HHFW) heating system at NSTX, and the ion cyclotron
minority heating at WEST [7]. These surrogate models have been shown not only to accelerate predictions by
six-to-seven orders of magnitude compared to the reference model, TORIC [8], but also to overcome other
numerical code limitations such as numerical artifacts [9].

The Automated Surrogate Model Generator Suite presented here addresses several challenges identified
previously, including hyperparameter optimization, model training, and uncertainty quantification. The models
included in the suite are the Random Forest Regressor (RFR), the Multi-layer Perceptron (MLP), and the
Gaussian Processes Regressor (GPR). The suite expands on the methods shown in [7] by implementing the MLP
models using the PyTorch framework, and also adds GPR models via TensorFlow based libraries. Additionally,
model hyperparameter tuning is carried out via Bayesian Optimization, which seeks for optimized model
hyperparameters including surrogate architecture. In the case of the GPR model, the suite tests multiple kernels
and optimizes its trainable variables. The inclusion of GPR-based models establishes verification, validation and
uncertainty quantification (VVUQ) framework for ML/Al-based surrogates. The suite is tested on the HHFW
heating database for NSTX described in [8]. The predictions are compared against those of the reference ICRF
heating model (TORIC), via two regression accuracy metrics: (i) the mean squared error (MSE) and (ii) the
coefficient of determination (R?).

The Automated Surrogate Model Generator Suite is used to develop three ML-based surrogate models for
accurate and real-time capable predictions of ICRF heating profiles for electrons and deuterium species in the
HHFW system of NSTX. For the electron-based predictions, these models achieve excellent regression
accuracies with MSE values of 1.67e-5, 1.85e-5, 2.07e-6 and R? scores of 0.965, 0.977 ,0.993, for the RFR,
MLP, and GPR models, respectively. Similarly, for the deuterium database, the achieved MSE values are
1.14e-4, 3.5e-5, 8.6e-6 and the R? scores are 0.934, 0.982, and 0.996. As observed, in terms of regression
accuracy, the GPR outperforms the other two architectures, while the RFR, though the least accurate, still
provides excellent regression scores. RFRs typically feature the simplest and fastest implementation, and it
shows marginal accuracy enhancement due to hyperparameter optimization, and features fast training times.
However, in order to achieve further refined ML-surrogates, we demonstrate that the suite provides workflows
for deploying two alternative and more accurate algorithms for surrogate implementation.
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Figure 1: Machine learning based deuterium power absorption predictions from the RFR (red dash-dotted), MLP (blue dashed), and GPR
(green) models obtained with the Automated Surrogate Model Generator Suite are shown in (a) strong single-pass and (b) multi-pass
absorption scenarios in NSTX, and compared to the reference computational model TORIC (black solid). For the GPR we show the mean
prediction (u, green dashed) and the 95% confidence interval based on the estimated standard deviation (o, green shadow).

Figure 1 shows ML-based predictions of (a) a strong single-pass absorption (b) a multi-pass absorption
scenarios of deuterium power absorption (Pp) for the RFR (red dash-dotted), MLP (blue dashed) and GPR
(green dash-shadowed) surrogates compared to the reference prediction obtained by TORIC (black solid).
Figure 1(a) illustrates an example of a strong single pass absorption scenario where the fast wave is deposited in
the lower field side region of the plasma, yielding a profile dominated by a singly-peaked feature corresponding
to a harmonic resonance. This is the most frequent type of pattern in the NSTX-P,, database, and matches the
type of profiles that all surrogates can capture accurately. Figure 1 (b) depicts the Pj, prediction with the lowest
surrogates’ regression accuracy, featuring a more complex deuterium power deposition pattern corresponding to
multi-pass absorption scenario. In these, while the RFR can reproduce the heating characteristics, only the MLP
and particularly the GPR model accurately capture the deuterium power absorption profile. Additionally, the
GPR model prediction also provides a standard deviation (o), shown as a 95% confidence interval (green shaded
area) in Figure 1. This interval denotes the estimated uncertainty in the prediction, and is inhomogeneous along
the radial direction and specific to each case. The estimated uncertainty is a result of a combination of factors
including the inherent data variability, data scarcity near specific data points, and the model’s limitations in
entirely capturing the underlying physical function. GPR models thus allow an estimate of the prediction
confidence in different plasma regions for each parametric combination.

Overall, this work introduces an Automated Surrogate Model Generator Suite that streamlines model
hyperparameter optimization, training and evaluation, while incorporating uncertainty quantification through
GPR-models. The framework, demonstrated on ICRF heating predictions, is a versatile, VVUQ-based surrogate
modeling implementation tool applicable to a wide range of fusion-relevant datasets.
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