Towards Practical Fusion Energy - Engineering Challenges and Development Strategies by the Perspective of CNPE

Wen Jingwu¹, Peng Shangkun¹, He Xuxia¹, Fan Li², Li Haitao², Lu Peng¹, Guo Zhipeng², Song Zhilin²

1. Fusion Engineering Technology Center (**FETEC**), 2. Beijing Institute of Nuclear Engineering (**BINE**)

China Nuclear Power Engineering Co., Ltd. (**CNPE**), Beijing 100840, China

wenjw@eu.cnpe.cc

ABSTRACT

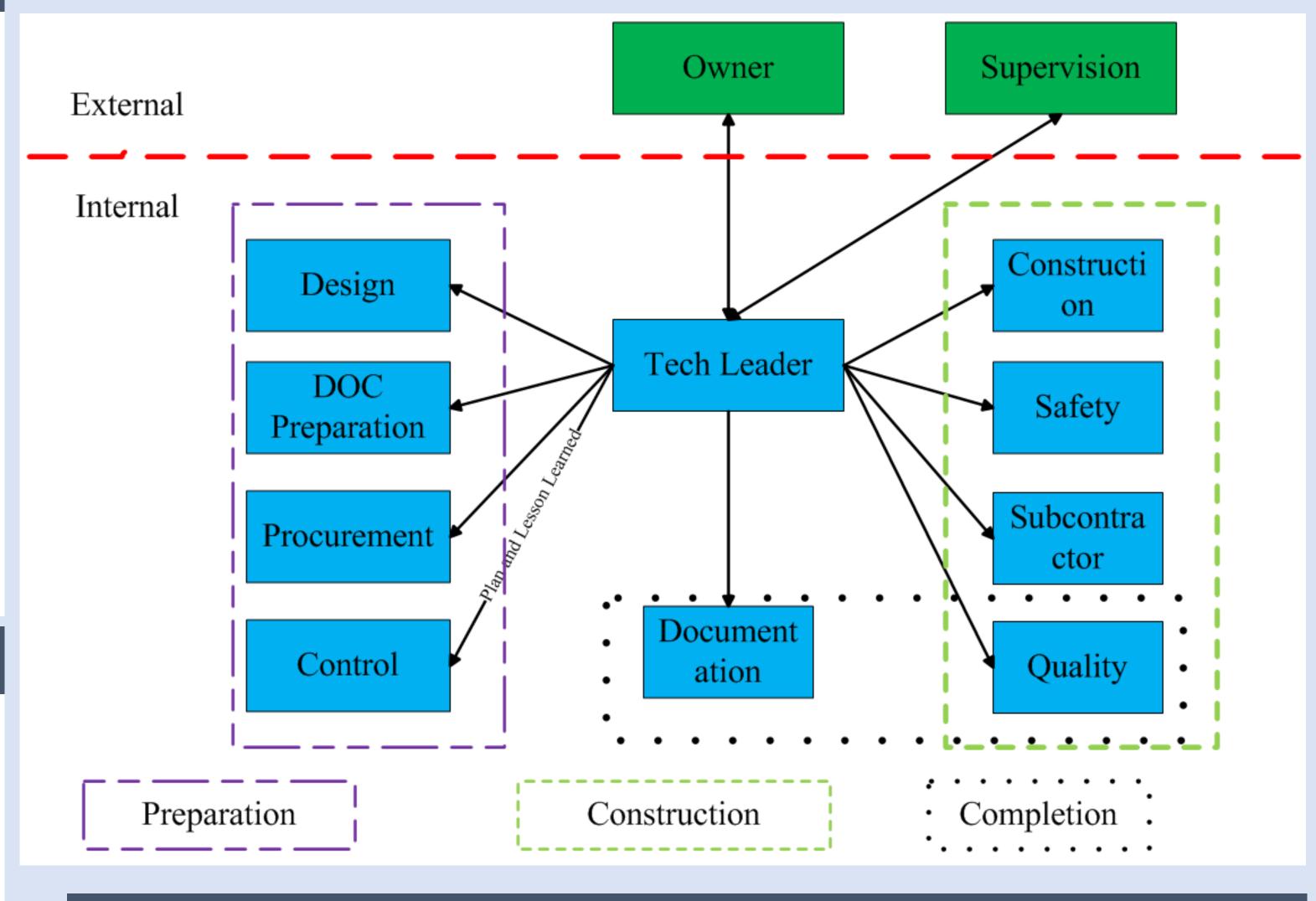
- •There are five critical dimensions in fusion reactor engineering:
- 1) safety regulatory systems; 2) design and engineering management;
- 3 project implementation practices; 4 industrial supply chain cultivation; 5 standardization framework.
- •Development strategies: leveraging organizational strengths to advance fusion energy development, formulating fusion regulatory policies that balance safety and development, fostering public-private collaboration to cultivate the fusion industry chain, and establishing a top-down design approach for building the fusion standardization system.

BACKGROUND

- •Breakthroughs in nuclear fusion technology poised to revolutionize energy production and generate substantial economic benefits, emerging as a key medium-to-long-term development focus in global science, technology, and energy domain.
- •The current research on controlled nuclear fusion is transitioning from scientific experiments to engineering practice.
- •The main forces of China's fusion industry include 2 research institutes (SWIP and ASIPP), 3 leading nuclear power EPC companies (CNNC, CGN, and SPIC), as well as a series of universities and innovative enterprises.

The engineering connotations of different development stages of fusion reactors

Dimension of Engineering	Experimental Facility	Experimental Reactor	Demonstration Reactor	Commercial Reactor
Organizational Model	Led by Research Institutes	Led by Research Institutes with	Led by Enterprises with Research	Led by Commercial Operation
		Enterprise Participation	Institute Participation	Companies
Safety Regulatory Systems	Establish Basic Safety Standards	Introduce a Hierarchical Regulatory	Establish a Regulatory and Legal	Optimize and Iterate the Fusion
		Framework	System for Fusion Reactors	Reactor Regulatory System
Design and Engineering		Full-System Integrated Design	Economic Optimization Design	Factory Standardized Design
Project Implementation		Model-Based Systems Engineering	Full-Lifecycle Project Management	Mature Fusion Reactor Project
		(MBSE)		ivianagement System
Industrial Supply Chain		Industrial Chain Cultivation	Industrial Chain Cultivation with	Enhancement of Full-Industrial-
			Diversified Applications	Chain Independence
Standardization Framework				Systematization and Independence
				of Standards


CHALLENGES / METHODS / IMPLEMENTATION

- **1.** Fusion reactor engineering organizations face the dilemma of a disconnect between research institute and enterprise delivery, coupled with talent and engineer mismatch.
- 2. Nuclear safety regulatory principles urgently need to be clarified.
- 3. Engineering design capabilities for fusion reactors need to be enhanced.
- **4.** The understanding of fusion reactor project management and its difficulty needs to be deepened.
- **5.** There is a contradiction between the development of the fusion reactor supply chain industry and its actual demands.
- 6. Existing standard system is incompatible with fusion reactor engineering.

OUTCOME

- 1. Leverage Organizational Advantages to Promote Fusion Energy Development
- Implement proactive policy guidance.
- Utilize enterprises' strengths in innovation and industrial transformation.
- 2. Formulate Nuclear Fusion Regulatory Policies Balancing Safety and Development
- Clarify the principles of fusion nuclear safety regulation.
- Expand the scope of nuclear material application and research.
- Adhere to the bottom line of nuclear safety culture.
- 3. Public-Private Cooperation to Cultivate the Fusion Industry Chain
 - Give play to the development guiding role of management departments.
 - Attach importance to the promotion role of industrial alliances.
 - Highlight the facilitation role of iterative industrial incubation.
- **4.** Establish a Nuclear Fusion Standard Framework based on the Top-Level Design
 - Implement top-level planning for standards.
 - Promote the institutionalized operation of standard formulation.

ITER Project Assembly Management with Technology at its Core

CONCLUSION

- •Research and Establishment of Design Management System for Fusion Reactor Engineering. This system is built and improved based on the existing systems and platforms of the nuclear industry.
- Fusion Reactor Engineering and Construction System led by professional enterprises.
 - Project organization system centered on plant EPC;
 - Project management system with technical management as core;
 - Project control system centered on agile management;
 - -Construction management system supported by IT and Digitalization.

ACKNOWLEDGEMENTS / REFERENCES

•Research on the Development of Engineering Applications of Fusion Reactors in China [J]. Strategic Study of Chinese Academy of Engineering