Impcat of Stark broadening on ion temperature
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1. Introduction

- DIM measures impurity ion spectra in the
ITER divertor plasma.

- Precise ion temperature (7;)
measurement is essential to evaluate
divertor sputtering.

- Impurity flow direction and magnitude
are also key for detachment control.

- Low-Z materials (Be, B) provide useful
emission lines for diagnostics.

- Line broadening by Zeeman effect and
Stark broadening must be clarified.

2. Method

- The Stark broadening is modeled by ion
(static) and electron (impact)
contributions.

- Electron broadening follows Griem’s
model with a Lorentzian line shape.

- The width is proportional to electron
density:

- lon microfields are described by the
Holtsmark distribution assuming

ni — ne.
- The plasma is isotropic, but the magnetic
field introduces anisotropy.

- The total Hamiltonian under arbitrary
external fields is

- The quantization axis is taken along the
magnetic field direction.

- The electric-field axis is defined by Euler
rotation R(0,, 6,):

ILIM): = Z | LIm)DY"(R).

(LIM| — Ed,|L'J'M') =
—E ) DYDY (Lim|d|L'T'm’)

Line-of-sight

Fig. 1: Euler rotation for turning the quantization
axis (z-axis) into the &-axis direction by first
rotating @, around the z-axis and then 6, around the
y’-axis which is the new y-axis after the first
rotation. The definition of observation vectors ey,

and ey are also shown: The former is in the x-z
plane and is perpendicular to the line-of-sight, and

the latter is on the y-axis.
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- Matrix elements include Zeeman and .
Stark interactions between sublevels.

- Perturbed energies are obtained by

diagonalizing the total Hamiltonian.

- Transition intensities are evaluated from .
y)

I=|{l|e-d|u)|.

- Observed polarization is decomposed .

iInto horizontal (eyy) and vertical (ey)
components.

- The final line shape is obtained by
Integrating over all microfields and

convolving with the impact profile.

3. Results: Be Il (467 nm)

- Line splits into T and o0 components

under 5 T magnetic field.

. At n, > 10°! m™>, Stark broadening

becomes significant.

- Gaussian fitting to central peak

overestimates T..
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Fig. 2: Examples of calculated spectra and
fitting results with a Gaussian profile for Be |l
467.3 nm line.

Even at low density, Zeeman splitting
inflates apparent T..

4. Results: B 1l lines

412 nm line: complex triplet structure,
difficult for 1. diagnostics.

494 nm line: Stark broadening visible
above 5 x 10 m™.

345 nm line: negligible Stark effect,
dominated by Doppler width.

Combining 494 nm and 345 nm lines
enables T; + n, diagnostics.

5. Summary
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Stark broadening affects Be Il (467 nm)
at high density.

Bll (494 nm, 345 nm) offer
complementary diagnostic capability.

Simultaneous 1; and n, measurements
possible for ITER divertor plasma.
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Fig. 3: Examples of calculated spectra and
fitting results with Gaussian profiles for B |l
494.0 nm.



