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1. Introduction 
• DIM measures impurity ion spectra in the 
ITER divertor plasma. 

• Precise ion temperature ( ) 
measurement is essential to evaluate 
divertor sputtering. 

• Impurity flow direction and magnitude 
are also key for detachment control. 

• Low-Z materials (Be, B) provide useful 
emission lines for diagnostics. 

• Line broadening by Zeeman effect and 
Stark broadening must be clarified. 

2. Method 
• The Stark broadening is modeled by ion 
(static) and electron (impact) 
contributions. 

• Electron broadening follows Griem’s 
model with a Lorentzian line shape. 

• The width is proportional to electron 
density: 

• Ion microfields are described by the 
Holtsmark distribution assuming 

. 
• The plasma is isotropic, but the magnetic 
field introduces anisotropy. 

• The total Hamiltonian under arbitrary 
external fields is 

. 
• The quantization axis is taken along the 
magnetic field direction. 

• The electric-field axis is defined by Euler 
rotation : 

| . 

 

 

• Matrix elements include Zeeman and 
Stark interactions between sublevels. 

• Perturbed energies are obtained by 
diagonalizing the total Hamiltonian. 

• Transition intensities are evaluated from 
. 

• Observed polarization is decomposed 
into horizontal  and vertical  
components. 

• The final line shape is obtained by 
integrating over all microfields and 
convolving with the impact profile. 

3. Results: Be II (467 nm) 
• Line splits into π and σ components 
under 5 T magnetic field. 

• At , Stark broadening 
becomes significant. 

• Gaussian fitting to central peak 
overestimates . 

• Even at low density, Zeeman splitting 
inflates apparent . 

4. Results: B II lines 
• 412 nm line: complex triplet structure, 
difficult for  diagnostics. 

• 494 nm line: Stark broadening visible 
above . 

• 345 nm line: negligible Stark effect, 
dominated by Doppler width. 

• Combining 494 nm and 345 nm lines 
enables  diagnostics. 

5. Summary 
• Stark broadening affects Be II (467 nm) 
at high density. 

• B II (494 nm, 345 nm) offer 
complementary diagnostic capability. 

• Simultaneous  and  measurements 
possible for ITER divertor plasma.
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Fig. 1: Euler rotation for turning the quantization 
axis ( -axis) into the -axis direction by first 
rotating  around the -axis and then  around the 
-axis which is the new -axis after the first 

rotation. The definition of observation vectors  
and  are also shown: The former is in the -  
plane and is perpendicular to the line-of-sight, and 
the latter is on the -axis.
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Fig. 3: Examples of calculated spectra and 
fitting results with Gaussian profiles for B II 
494.0 nm.
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Fig. 2: Examples of calculated spectra and 
fitting results with a Gaussian profile for Be II 
467.3 nm line. 


