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ABSTRACT 3.3 Inner-outer asymmetry of power load

We investigated separatrix and Scrape-off-Layer (SOL) behaviour in three | | QCE pulses have 3-4 times higher energy deposited on outer limiter
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effort needs to implement new scenario for future devices.

1. BACKGROUND

4. The risk mitigation strategy on JET

* Fusion scgnarlos must deliver high performance while protecting 4.1 Scenario Development strategy |
plasma-facing components. | B — P
« ITER will face much higher steady and transient heat loads than current | | A Progressive approach performed: | mands s s A—A
devices. * Verifying the DNX config with low Ip % I':::Z " 7
: : . Ohmic pulse ’ g
* JET develops and tests integrated solutions: ITER Baseline — reference | |, Assessing the UDPT power handling LI
scenario for 15MA; XPR — impurity radiation to spread power; QCE — by comparing with previous high j:; !ﬁ%
intrinsic small ELM regime with broad SOL transport. delta pulse ——— e P
2. Broader SOL width in QCE regime . App.“.ed DNX . p.rogresswe.ly with
auxiliary  heating; reducing top Proteus Code used for:
; clearance step by step; « designing double null configuration;
| The near-double-null (DNX) shape is used for QCE on JET and || « Progress to next step only after * determining the maximum allowable
the regime is distinguished by its generally higher separatrix confirming no overheating at UDP power  to the upper divertor leg by
1 and SOL collisionality, associating with broader SOL width. performing top gap scan.

| V& appears to be a good ordering parameter for the SOL
| | broadening trend.

4.2 Robust real time protection

tailored response
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and boundary checks to prevent
unsafe  plasma—wall contact

3. Impact of QCE plasma boundary on JET operation

An example showing overheating of UDP tiles in QCE

— - regime triggers a tailored response from 53.3 s as in
3.1 Interaction with NBI: duct pressure and re-ionisation issue during scenario development RHS figure
The resulting broader SOL interacts with fast Beam neutrals, contributing to an
unfavourable power load on local limiter. Elevated pressures in the Beam Duct were| IR EVEI(I BT L BAT10]1 ETaY
Obsggge.d, forl pullsesl |n ]DIII\!)l(IcI:?nflguratmn when QCE regime is achieved eScenarios analysed: QCE, JET-ITER Baseline and XPR,. All address power exhaust
0. (a) ’ - E o (lb) 127 _ with different strategies; QCE highlighted for broad SOL profiles and strong shaping.
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% 700 - o go ENN Eé%& ¥ w ; ""E o s N i limiter, higher flux to main chamber limiters, extra power on UDPT.
8 n ool @ %Eﬁ = o o B o *Risk mitigation strategies
600 ‘ o ED_ET pui:swith _ 0 -  cilign O E S 06 S . v' Operational risks anticipated and precautious experimental strategies set up prior
500é,l...|...|...|...|...T.l.§ Oé...|...|...|...[...§ 0_43,....l...?...l...|...|...|...: to the execution.
6 8 L(:B,(Il/IZW)M © 8% 20 40 60 80 100 BB 10L11202(]4_16 1820 | | v' Desired double null configuration and maximum allowable power were simulated
Surface temperature T_(Be,wall) of the Iimiterxrnmeg;{nt)o NBI NBI OCT8 duréeiu;;ressrzlre against oy equilibrium Code-Proteus.
Octant(a) Octant 4 NB total input power; and (b) near SOL neyL  for QCE non-neon v" Robust Real-time protection system prevented the power load damage and
density decay length 4,,, ~for QCE pulses seeding pulse. assisted the configuration implementation.

The QCE experiments at JET exemplify how advanced physics
understanding, thorough preparation, and innovative risk mitigation
strategies enable the successful implementation of new scenario
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3.2 Impact on energy distribution to PFCs

The heat load on the Upper Dump Plate Tiles in the QCE regime can be up to 5-6
times higher compared to the other scenarios. Additionally, the energy distribution
shows a pronounced inner-outer asymmetry in QCE pulses, with the energy deposited

on the outer limiter being up to four times higher than on the inner limiter
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