
• KSTAR H-mode experiments with the new W divertor investigated detachment and 

tungsten transport using D fuelling and N seeding.

• The two gases produced clearly different core and edge plasma responses.

• D fuelling alone did not achieve strong detachment with 6 MW heating, whereas N 

seeding led to near complete detachment marked by an abrupt drop in outer 

target electron detachment.

• Core radiation also differed, with N seeding producing much stronger on-axis 

radiation and pronounced W density peaking than D fuelling.

• This behaviour is consistent with weakened neoclassical temperature screening at 

higher ion-ion collisionality [2,3].

• Overall, N seeding effectively promotes divertor detachment but aggravates core 

W accumulation, requiring additional control of inward W transport for core-edge 

compatible operation.
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• 𝐼𝑝 = 0.5 MA, 𝐵𝑇  = 1.9 T, 𝑞95 = 5.8, 𝑃ℎ𝑒𝑎𝑡 = 6.0 MW (5.0 MW NBI + 1.0 MW 

on-axis ECRH) 

• Forward 𝐵𝑇  direction (ion 𝐵 × ∇𝐵 drift toward the active lower X-point)

• Divertor D2 and N2 injection rates were varied between the discharges

• Three representative discharges were selected: a reference (Γ𝐷2 = 2.2 ×

1020 atoms/s), a D-fuelled (Γ𝐷2 = 3.8 × 1020 atoms/s), and an N-seeded 

discharges (Γ𝑁2 = 1.7 × 1020 atoms/s)

𝐷𝛼  emission intensity and its power spectrogram
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W density (𝑛𝑊 = 𝑃𝑟𝑎𝑑,𝑡𝑜𝑡/𝑛𝑒𝐿𝑊 [4]) profiles: 

Flux surface averaged (solid) and outer midplane (dashed)

Temperature screening coefficient averaged over all charge states, 
TSC = 𝐻𝑊/𝐾𝑊 [2], calculated from FACIT [2,5,6]

On-axis peaking of 𝑛𝑊, 
𝑛𝑊,𝑟/𝑎=0.0/𝑛𝑊,𝑟/𝑎=0.8  
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2D distributions of total radiated 
power (𝑃𝑟𝑎𝑑,𝑡𝑜𝑡), average over the 
gas-injected phase (12.9-13.4 s)
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• D fuelling: 𝑛𝑊 slightly increased near the magnetic axis compared to the reference case.

• N seeding: a much larger increase, accompanied by stronger on-axis peaking (reaching up to  ~ 

1% of ത𝑛𝑒).

• 𝜈𝑁𝑊 ≫ 𝜈𝐷𝑊 (𝜈𝑎𝑏 ∝ 𝑍𝑎
2𝑍𝑏

2) →W transport is determined by background N.

With continuous N2 seeding, collisionality increased due to N concentration increase along 

with 𝑇𝑖 reduction, which was further exacerbated by W accumulation.

• This resulted in neoclassical temperature peaking (inward convection, TSC > 0) [2,3].

• Toroidal rotation (of C6+ ions) was reduced by ~20-30% as well. 

• For a full description of W accumulation, pedestal transport and its source need to be analyzed.
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Collisionality dependence of 
TSC  for W44+ ion [2]

TSC < 0: temperature screening
TSC > 0: temperature peaking

CONCLUSION
• Gas injection experiments in H-modes with the new lower W divertor (and carbon first wall) in 

KSTAR show distinct core and edge responses to D fuelling and N seeding.

• Even strong D fuelling did not produce significant detachment at the outer divertor target for 

the 6 MW input power discharges. 

• With N seeding, abrupt (‘cliff-edge’) drops in target ion flux and electron temperature were 

observed indicating strong detachment, likely caused by power exhaustion due to strong X-

point radiation.

• N seeding also caused strong on-axis core radiation peaking, attributed to increased W 

concentrations and consistent with weakened neoclassical temperature screening at higher 

ion-ion collisionality.

• Additional NBI or ICRH could mitigate this by raising 𝑇𝑖 ​, lowering collisionality, and 

strengthening screening.

• Modelling analysis with SOLPS-ITER [7] and NEO [8,9] is planned.
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With D fueling, 

• 𝑃𝑟𝑎𝑑,𝑡𝑜𝑡 stayed nearly unchanged, while the confinement (𝐻98(𝑦,2)) dropped by ~20%. 

• 𝑊𝐼 line emission at the inner divertor reduced.

• 𝑓
𝐸𝐿𝑀

 increased by up to a factor of ~2 from an initial ~90 Hz, accompanied by smaller ELMs.

With N seeding, 

• 𝑃𝑟𝑎𝑑,𝑡𝑜𝑡 rose to ~50% of 𝑃ℎ𝑒𝑎𝑡 and 𝐻98(𝑦,2) decreased by ~50%.

• 𝑊𝐼 line emission at the inner divertor further reduced.

• Abrupt transition to higher frequency ELMs at ~9.3 s, with 𝑓𝐸𝐿𝑀  ~100-500 Hz.
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Outer target ion saturation current density 𝑗𝑠𝑎𝑡,𝑜𝑢𝑡  at the separatrix, 
Electron temperature 𝑇𝑒𝑡 ~4 cm outside the separatrix

Poloidal locations of 
Langmuir probes
(yellow: 𝑗𝑠𝑎𝑡, cyan: 𝑇𝑒𝑡)

Radial profiles of ELM-filtered 𝑗𝑠𝑎𝑡,𝑜𝑢𝑡  for the 
N-seeded discharge with lower seeding rate

• In both D-fuelled cases (Reference, D), 𝑗𝑠𝑎𝑡,𝑜𝑢𝑡 remained unchanged, indicating that 6 MW 

H-modes could not achieve detachment with fuelling alone.

• Strong N seeding produced a significant drop in 𝑗𝑠𝑎𝑡,𝑜𝑢𝑡 and an abrupt 𝑇𝑒𝑡 collapse ~1 s 

after injection, indicating complete outer target detachment.

• Radial profiles (from strike point sweeping) also show reduced ion flux near the strike point.

(Left) Line-integrated radiated power, 
average over 7.0-7.5 s (red) and 12.9-13.4 s 
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