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e KSTAR H-mode experiments with the new W divertor investigated detachment and 2D distributions of total radiated
: : : 10 19 power (Py,qq ¢ot), average over the
tungsten transport using D fuelling and N seeding. gas-injected phase (12.9-13.4 s)
e The two gases produced clearly different core and edge plasma responses. 0o
e D fuelling alone did not achieve strong detachment with 6 MW heating, whereas N 08 %"
seeding led to near complete detachment marked by an abrupt drop in outer e E
target electron detachment. os- os aly
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e Core radiation also differed, with N seeding producing much stronger on-axis
radiation and pronounced W density peaking than D fuelling. 02
e This behaviour is consistent with weakened neoclassical temperature screening at 0.0
higher ion-ion collisionality [2,3]. ] ] vl (Left) Line-integrated radiated power,
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e Forward By direction (ion B X VB drift toward the active lower X-point)
e Divertor D, and N, injection rates were varied between the discharges CORE TU NGSTEN IMPURITY BEHAVIORS
e Three representative discharges were selected: a reference (I'y, = 2.2 X ;. ,
: 1.0
1049 atoms/s), a D-fuelled (I'r, = 3.8 x 102° atoms/s), and an N-seeded Reference 7.0-7.5 s 12.9-13.4 s © |
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> { L | Temperature screening coefficient averaged over all charge states, TSC < 0: temperature screening
ol ‘ L ' TSC = Hy, /Ky, [2], calculated from FACIT [2,5,6] TSC > 0: temperature peaking
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) SRS SR DU AN L T e D fuelling: ny, slightly increased near the magnetic axis compared to the reference case.
Timels] e Nseeding: a much larger increase, accompanied by stronger on-axis peaking (reaching up to ~
. . D, emission intensity and its power spectrogram 5 5 P Y 5 P g & Up
With D fueling, 1% of 11,).
* Pradtor Stayed nearly unchanged, while the confinement (Hqg(,, 2)) dropped by ~20%. o Vaw D Vpw (Vap X Z2Z7) > W transport is determined by background N.
e WI line emission at the inner divertor reduced. With continuous N, seeding, collisionality increased due to N concentration increase along
e [ increased by up to a factor of ~2 from an initial ~90 Hz, accompanied by smaller ELMs. with T; reduction, which was further exacerbated by W accumulation.
With N seeding, e This resulted in neoclassical temperature peaking (inward convection, TSC > 0) [2,3].
* Pradtot rose to ~50% of Ppeqr and Hog(y ) decreased by ~50%. e Toroidal rotation (of C°* ions) was reduced by ~20-30% as well.
e W I line emission at the inner divertor further reduced. e For a full description of W accumulation, pedestal transport and its source need to be analyzed.

e Abrupt transition to higher frequency ELMs at ~9.3 s, with fz;; ~100-500 Hz.

CONCLUSION
DETACHMENT EVOLUTION AND RADIATION DISTRIBUTION e Gas injection experiments in H-modes with the new lower W divertor (and carbon first wall) in

KSTAR show distinct core and edge responses to D fuelling and N seeding.
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point radiation.
e N seeding also caused strong on-axis core radiation peaking, attributed to increased W
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strengthening screening.
e Modelling analysis with SOLPS-ITER [7] and NEO [8,9] is planned.

Outer target ion saturation current density jsq: oue at the separatrix,

Electron temperature T, ~4 cm outside the separatrix
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