Stellarator Plasma Start-up Model Based on Energy Confinement Time Scaling Laws, Experimental Verification and Numerical Simulation Results

¹Chun Yan Li, ^{1,2*}Ping Wei Zheng, ^{3,4}Xin Chen Jiang, ^{1*}Xue Yu Gong, ¹Zheng Kun Gao,

¹School of Nuclear Science and Technology, University of South China, Hengyang, Hunan Province, 421001, P.R. China

²School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan Province, 421001, PR China

³ENN Science and Technology Development Co., Ltd., 065001, Langfang, P.R. China ⁴East China University of Science and Technology, 200237, Shanghai, P.R. China

* E-mail: pwzheng@usc.edu.cn gongxueyu@126.com;

Based on the energy confinement time scaling law of stellarator [1], combined with energy balance equation and the TRAVIS ray tracing code [2-3], a new zero-dimensional start-up model including electron cyclotron resonance heating (ECRH) and impurity line radiation power loss is established for stellarator plasmas in this paper.

The model is verified against experimental results of

W7-X stellarator [4-5], the temporal evolution of both

electron temperature and radiation power loss exhibits close agreement with experimental measurements, which verified that the model can correctly give the plasma start-up results of the stellarator under ECRH.

Fig2. Simulation results provided by the model under the experimental parameters of W7-X stellarator. (a) Temporal evolution of ECRH power absorption, (b) temporal evolution of electron density, (c) temporal evolution of electron temperature and (d) Temporal evolution of radiation power and diffusive power.

Fig1. Start-up model for stellarator plasmas

This model is used to predict the results of plasma start-up under 28 GHz ECRH for CN-H1 stellarator [6] which is currently being restored and reconstructed by University of South China using the disassembled components of the H1-NF stellarator [7] in the Australian National University. The effects of the electron-to-ion temperature ratio (T_e/T_i), ECRH injection power (P₀), ECRH power deposition position, and impurity concentrations (carbon and iron) on start-up are systematically studied and analyzed. Under the condition of Te/Ti=1, P0=200 kW with core-localized ECRH deposition, 1% carbon and 0.1% iron impurities, the plasma startup is successful, and the ECRH power absorption efficiency quickly ramp-up to 94.8%. When the plasma density ramp-up to 2×10^{18} m⁻³, the electron temperature could reach 373.3eV, and peak impurity line radiation power is 1.1 kW.

Fig3. Start-up results for CN-H1 stellarator predicted by the model under 28 GHz ECRH. (a) Temporal evolution of electron density, (b) ECRH power absorption, (c) electron temperature and (d) impuraty line radiation power.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Dr. N. B. Marushchenko for providing the TRAVIS source code. This work is supported by the National MCF Energy R&D Program (Grant Nos. 2022YFE03070000, 2022YFE03070003 and 2022YFE03090001), the National Natural Science Foundation of China (Grant Nos. 12375220, 12305244 and 12075114).

REFERENCES

[1] Yamada H, Harris J H, Dinklage A, et al., Characterization of energy confinement in net-current free plasmas using the extended International Stellarator Database. Nucl. Fusion 45 (2005) 1684–1693.

[2] N.B. Marushchenko, V. Erckmann, H.J. Hartfuss, et al., Ray Tracing Simulations of ECR Heating and ECE Diagnostic at W7-X Stellarator, Plasma and Fusion Research 2 (2007) S1129–S1129.

[3] N.B. Marushchenko, Y. Turkin, H. Maassberg, Ray-tracing code TRAVIS for ECR heating, EC current drive and ECE diagnostic, Computer Physics Communications 185 (2014) 165–176.

[4] H.P. Laqua, J. Baldzuhn, H. Braune, et al., Overview of W7-X ECRH Results, EPJ Web Conf. 203 (2019) 02002.

[5] H.P. Laqua, the W7-X Team, Steady State ECRH Operation at the W7-X Stellarator, Plasma and Fusion Research 16 (2021) 2402058–2402058.

[6] Yizhuohang Liu, Pingwei Zheng, Xueyu G, et al. Numerical study of plasmas start-up by electron cyclotron waves in NCST spherical tokamak and CN-H1 stellarator, Plasma Sci. Technol. 26 (2024) 075101.

[7] B. D.Blackwell, J. H. Harris, J. Howard, et al., Overview and Results from the H-1 National Facility. AIP Conf. Proc. 669 (2003) 158-161.